When deoxyribonucleic (DNA), held at a fixed tension, is subjected to torsional deformations, it responds by forming plectonemic supercoils accompanied by a reduction in its end-to-end extension. This transition from the extended state to the supercoiled state is marked by an abrupt buckling of the DNA accompanied by a rapid “hopping” of the DNA between the extended and supercoiled states. This transition is studied by means of Brownian dynamics simulations using a discrete wormlike-chain (dWLC) model of DNA. The simulations reveal, among other things, the distinct regimes that occur during DNA supercoiling and the probabilities of states within the buckling transition regime.
References
1.
Marko
, J.
, and Siggia
, E.
, 1995
, “Statistical Mechanics of Supercoiled DNA
,” Phys. Rev. E
, 52
(3
), pp. 2912
–2938
.2.
Jian
, H.
, Schlick
, T.
, and Vologodskii
, A.
, 1998
, “Internal Motion of Supercoiled DNA: Brownian Dynamics Simulations of Site Juxtaposition
,” J. Mol. Biol.
, 284
(2
), pp. 287
–296
.3.
Huang
, J.
, Schlick
, T.
, and Vologodskii
, A.
, 2001
, “Dynamics of Site Juxtaposition in Supercoiled DNA
,” Proc. Natl. Acad. Sci. U.S.A.
, 98
(3
), pp. 968
–973
.4.
Merlitz
, H.
, Rippe
, K.
, Klenin
, K. V.
, and Langowski
, J.
, 1998
, “Looping Dynamics of Linear DNA Molecules and the Effect of DNA Curvature: A Study by Brownian Dynamics Simulation
,” Biophys. J.
, 74
(2 Pt. 1
), pp. 773
–779
.5.
Afra
, R.
, and Todd
, B. A.
, 2013
, “Kinetics of Loop Formation in Worm-Like Chain Polymers
,” J. Chem. Phys.
, 138
(17
), p. 174908
.6.
Travers
, A.
, and Muskhelishvili
, G.
, 2007
, “A Common Topology for Bacterial and Eukaryotic Transcription Initiation?
” EMBO Rep.
, 8
(2
), pp. 147
–151
.7.
Zechiedrich
, E. L.
, Khodursky
, A. B.
, Bachellier
, S.
, Schneider
, R.
, Chen
, D.
, Lilley
, D. M.
, and Cozzarelli
, N. R.
, 2000
, “Roles of Topoisomerases in Maintaining Steady-State DNA Supercoiling in Escherichia coli
,” J. Biol. Chem.
, 275
(11
), pp. 8103
–8113
.8.
Samul
, R.
, and Leng
, F.
, 2007
, “Transcription-Coupled Hypernegative Supercoiling of Plasmid DNA by T7 RNA Polymerase in Escherichia coli Topoisomerase I-Deficient Strains
,” J. Mol. Biol.
, 374
(4
), pp. 925
–935
.9.
Ma
, J.
, and Wang
, M.
, 2014
, “Interplay Between DNA Supercoiling and Transcription Elongation
,” Transcription
, 5
(3
), pp. 1
–4
.10.
Forth
, S.
, Deufel
, C.
, Sheinin
, M.
, Daniels
, B.
, Sethna
, J.
, and Wang
, M.
, 2008
, “Abrupt Buckling Transition Observed During the Plectoneme Formation of Individual DNA Molecules
,” Phys. Rev. Lett.
, 100
(14
), p. 148301
.11.
Brutzer
, H.
, Luzzietti
, N.
, Klaue
, D.
, and Seidel
, R.
, 2010
, “Energetics at the DNA Supercoiling Transition
,” Biophys. J.
, 98
(7
), pp. 1267
–1276
.12.
Marko
, J. F.
, and Neukirch
, S.
, 2012
, “Competition Between Curls and Plectonemes Near the Buckling Transition of Stretched Supercoiled DNA
,” Phys. Rev. E
, 85
(1
), p. 011908
.13.
Baranello
, L.
, Levens
, D.
, Gupta
, A.
, and Kouzine
, F.
, 2012
, “The Importance of Being Supercoiled: How DNA Mechanics Regulate Dynamic Processes
,” Biochim. Biophys. Acta
, 1819
(7
), pp. 632
–638
.14.
Corbett
, K. D.
, and Berger
, J. M.
, 2004
, “Structure, Molecular Mechanisms, and Evolutionary Relationships in DNA Topoisomerases
,” Annu. Rev. Biophys. Biomol. Struct
, 33
(1
), pp. 95
–118
.15.
Moroz
, J. D.
, and Nelson
, P.
, 1997
, “Torsional Directed Walks, Entropic Elasticity, and DNA Twist Stiffness
,” Proc. Natl. Acad. Sci. U.S.A.
, 94
(26
), pp. 14418
–14422
.16.
Moroz
, J.
, and Nelson
, P.
, 1998
, “Entropic Elasticity of Twist-Storing Polymers
,” Macromolecules
, 31
(18
), pp. 6333
–6347
.17.
Seol
, Y.
, Zhang
, H.
, Pommier
, Y.
, and Neuman
, K. C.
, 2012
, “A Kinetic Clutch Governs Religation by Type IB Topoisomerases and Determines Camptothecin Sensitivity
,” Proc. Natl. Acad. Sci. U.S.A.
, 109
(40
), pp. 16125
–16130
.18.
Strick
, T.
, Allemand
, J.
, Croquette
, V.
, and Bensimon
, D.
, 2000
, “Twisting and Stretching Single DNA Molecules
,” Prog. Biophys. Mol. Biol.
, 74
(1–2
), pp. 115
–140
.19.
Koster
, D. A.
, Czerwinski
, F.
, Halby
, L.
, Crut
, A.
, Vekhoff
, P.
, Palle
, K.
, Arimondo
, P. B.
, and Dekker
, N. H.
, 2008
, “Single-Molecule Observations of Topotecan-Mediated TopIB Activity at a Unique DNA Sequence
,” Nucl. Acids Res.
, 36
(7
), pp. 2301
–2310
.20.
Goshen
, E.
, Zhao
, W.
, Carmon
, G.
, Rosen
, S.
, Granek
, R.
, and Feingold
, M.
, 2005
, “Relaxation Dynamics of a Single DNA Molecule
,” Phys. Rev. E
, 71
(6
), p. 061920
.21.
Zlatanova
, J.
, McAllister
, W. T.
, Borukhov
, S.
, and Leuba
, S. H.
, 2006
, “Single-Molecule Approaches Reveal the Idiosyncrasies of RNA Polymerases
,” Structure
, 14
(6
), pp. 953
–966
.22.
Crut
, A.
, Koster
, D. A.
, Seidel
, R.
, Wiggins
, C. H.
, and Dekker
, N. H.
, 2007
, “Fast Dynamics of Supercoiled DNA Revealed by Single-Molecule Experiments
,” Proc. Natl. Acad. Sci. U.S.A.
, 104
(29
), pp. 11957
–11962
.23.
Koster
, D. A.
, Crut
, A.
, Shuman
, S.
, Bjornsti
, M.-A.
, and Dekker
, N. H.
, 2010
, “Cellular Strategies for Regulating DNA Supercoiling: A Single-Molecule Perspective
,” Cell
, 142
(4
), pp. 519
–530
.24.
Daniels
, B.
, Forth
, S.
, Sheinin
, M.
, Wang
, M.
, and Sethna
, J.
, 2009
, “Discontinuities at the DNA Supercoiling Transition
,” Phys. Rev. E
, 80
(4
), p. 040901
.25.
Vilfan
, I. D.
, Lipfert
, J.
, Koster
, D. A.
, Lemay
, S. G.
, and Dekker
, N. H.
, 2009
, “Magnetic Tweezers for Single-Molecule Experiments
,” Handbook of Single-Molecule Biophysics
, Springer-Verlag
, New York
, Chap. 13, pp. 371
–396
.26.
van Loenhout
, M. T. J.
, de Grunt
, M. V.
, and Dekker
, C.
, 2012
, “Dynamics of DNA Supercoils
,” Science
, 338
(6103
), pp. 94
–97
.27.
Ivenso
, I. D.
, and Lillian
, T. D.
, 2014
, “Brownian Dynamics Simulation of the Dynamics of Stretched DNA
,” ASME
Paper No. DETC2014-35487.28.
Ivenso
, I. D.
, and Lillian
, T. D.
, 2015
, “The Dynamics of DNA Supercoiling: A Brownian Dynamics Study
,” ASME
Paper No. DETC2015-47444.29.
Klenin
, K.
, Merlitz
, H.
, and Langowski
, J.
, 1998
, “A Brownian Dynamics Program for the Simulation of Linear and Circular DNA and Other Wormlike Chain Polyelectrolytes
,” Biophys. J.
, 74
(2 Pt. 1
), pp. 780
–788
.30.
Chirico
, G.
, and Langowski
, J.
, 1996
, “Brownian Dynamics Simulations of Supercoiled DNA With Bent Sequences
,” Biophys. J.
, 71
(2
), pp. 955
–971
.31.
Chirico
, G.
, and Langowski
, J.
, 1994
, “Kinetics of DNA Supercoiling Studied by Brownian Dynamics Simulation
,” Biopolymers
, 34
(3
), pp. 415
–433
.32.
Allison
, S.
, 1986
, “Brownian Dynamics Simulation of Wormlike Chains. Fluorescence Depolarization and Depolarized Light Scattering
,” Macromolecules
, 19
(1
), pp. 118
–124
.33.
Vologodskii
, A.
, 2007
, “Monte Carlo Simulation of DNA Topological Properties
,” Topology in Molecular Biology
, New York University
, New York
, pp. 23
–41
.34.
Charvin
, G.
, Vologodskii
, A.
, Bensimon
, D.
, and Croquette
, V.
, 2005
, “Braiding DNA: Experiments, Simulations, and Models
,” Biophys. J.
, 88
(6
), pp. 4124
–4136
.35.
Klenin
, K. V.
, Vologodskii
, A. V.
, Anshelevich
, V. V.
, Dykhne
, A. M.
, and Frank-Kamenetskii
, M. D.
, 1991
, “Computer Simulation of DNA Supercoiling
,” J. Mol. Biol.
, 217
(3
), pp. 413
–419
.36.
Vologodskii
, A.
, 2006
, “Brownian Dynamics Simulation of Knot Diffusion Along a Stretched DNA Molecule
,” Biophys. J.
, 90
(5
), pp. 1594
–1597
.37.
Vologodskii
, A.
, 2009
, “Determining Protein-Induced DNA Bending in Force-Extension Experiments: Theoretical Analysis
,” Biophys. J.
, 96
(9
), pp. 3591
–3599
.38.
Vologodskii
, A.
, 2006
, “Simulation of Equilibrium and Dynamic Properties of Large DNA Molecules
,” Computational Studies of RNA and DNA
, Springer
, Dordrecht, The Netherlands
, pp. 579
–604
.39.
Jian
, H.
, Vologodskii
, A. V.
, and Schlick
, T.
, 1997
, “A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long Linear DNA
,” J. Comput. Phys.
, 136
(1
), pp. 168
–179
.40.
Vologodskii
, A.
, and Cozzarelli
, N.
, 1995
, “Modeling of Long-Range Electrostatic Interactions in DNA
,” Biopolymers
, 35
(3
), pp. 289
–296
.41.
Mielke
, S. P.
, Fink
, W. H.
, Krishnan
, V. V.
, Grønbech Jensen
, N.
, and Benham
, C. J.
, 2004
, “Transcription-Driven Twin Supercoiling of a DNA Loop: A Brownian Dynamics Study
,” J. Chem. Phys.
, 121
(16
), pp. 8104
–8112
.42.
Rotne
, J.
, and Prager
, S.
, 1969
, “Variational Treatment of Hydrodynamic Interaction in Polymers
,” J. Chem. Phys.
, 50
(11
), pp. 4831
–4837
.43.
Wajnryb
, E.
, Mizerski
, K. A.
, Zuk
, P. J.
, and Szymczak
, P.
, 2013
, “Generalization of the Rotne–Prager–Yamakawa Mobility and Shear Disturbance Tensors
,” J. Fluid Mech.
, 731
, p. R3(1–12)
.44.
Iniesta
, A.
, and de la Torre
, J.
, 1990
, “A Second-Order Algorithm for the Simulation of the Brownian Dynamics of Macromolecular Models
,” J. Chem. Phys.
, 92
(3
), pp. 2015
–2018
.45.
Ermak
, D. L.
, and McCammon
, J. A.
, 1978
, “Brownian Dynamics With Hydrodynamic Interactions
,” J. Chem. Phys.
, 69
(4
), pp. 1352
–1360
.46.
Marko
, J.
, 2007
, “Torque and Dynamics of Linking Number Relaxation in Stretched Supercoiled DNA
,” Phys. Rev. E
, 76
(2
), p. 021926
.47.
Daniels
, B. C.
, and Sethna
, J. P.
, 2011
, “Nucleation at the DNA Supercoiling Transition
,” Phys. Rev. E
, 83
(4
), p. 041924
.Copyright © 2016 by ASME
You do not currently have access to this content.