In this manuscript, we have used the recently developed Fα-calculus to calculate the energy straggling function through the fractal distributed structures. We have shown that such a fractal structure of space causes the fractal pattern of the energy loss. Also, we have offered Fα-differential Fokker–Planck equation for thick fractal absorbers.
Issue Section:
Research Papers
References
1.
Hilfer
, R.
, ed., 2000
, Applications of Fractional Calculus in Physics
, World Scientific
, Singapore.2.
Carpinteri
, A.
, and Mainardi
, F.
, eds., 2014
, Fractals and Fractional Calculus in Continuum Mechanics
, Vol. 378
, Springer
, Berlin.3.
Sabatier
, J.
, Agrawal
, O. P.
, and Tenreiro Machado
, J. A.
, 2007
, Advances in Fractional Calculus
, Vol. 4
, Springer
, Berlin
.4.
Ma
, L.
, and Li
, C.
, 2016
, “Center Manifold of Fractional Dynamical System
,” ASME J. Comput. Nonlinear Dyn.
, 11
(2
), p. 021010
.5.
Velmurugan
, G.
, and Rakkiyappan
, R.
, 2016
, “Hybrid Projective Synchronization of Fractional-Order Chaotic Complex Nonlinear Systems With Time Delays
,” ASME J. Comput. Nonlinear Dyn.
, 11
(3
), p. 031016
.6.
Baleanu
, D.
, Muslih
, S. I.
, Rabei
, E. M.
, Golmankhaneh
, A. K.
, and Golmankhaneh
, A. K.
, 2010
, “On Fractional Dynamics on the Extended Phase Space
,” ASME J. Comput. Nonlinear Dyn.
, 5
(4
), p. 041011
.7.
Agrawal
, O. P.
, 2008
, “Fractional Optimal Control of a Distributed System Using Eigenfunctions
,” ASME J. Comput. Nonlinear Dyn.
, 3
(2
), p. 021204
.8.
Özdemir
, N.
, and Iskender
, B. B.
, 2010
, “Fractional Order Control of Fractional Diffusion Systems Subject to Input Hysteresis
,” ASME J. Comput. Nonlinear Dyn.
, 5
(2
), p. 021002
.9.
Murillo
, J. Q.
, and Yuste
, S. B.
, 2011
, “An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
,” ASME J. Comput. Nonlinear Dyn.
, 6
(2
), p. 021014
.10.
Zaslavsky
, G. M.
, 1994
, “Fractional Kinetic Equation for Hamiltonian Chaos
,” Phys. D
, 76
(1
), pp. 110
–122
.11.
Riewe
, F.
, 1997
, “Mechanics With Fractional Derivatives
,” Phys. Rev. E
, 55
(3
), p. 3581
.12.
Bouchaud
, J.-P.
, and Georges
, A.
, 1990
, “Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications
,” Phys. Rep.
, 195
(4–5
), pp. 127
–293
.13.
Metzler
, R.
, Barkai
, E.
, and Klafter
, J.
, 1999
, “Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker–Planck Equation Approach
,” Phys. Rev. Lett.
, 82
(18
), p. 3563
.14.
Klages
, R.
, Radons
, G.
, and Sokolov
, I. M.
, eds., 2008
, Anomalous Transport: Foundations and Applications
, Wiley
, Hoboken, NJ.15.
Metzler
, R.
, Barkai
, E.
, and Klafter
, J.
, 1999
, “Anomalous Transport in Disordered Systems Under the Influence of External Fields
,” Phys. A
, 266
(1
), pp. 343
–350
.16.
Metzler
, R.
, Glöckle
, W. G.
, and Nonnenmacher
, T. F.
, 1994
, “Fractional Model Equation for Anomalous Diffusion
,” Phys. A
, 211
(1
), pp. 13
–24
.17.
Zaslavsky
, G. M.
, 2002
, “Chaos, Fractional Kinetics, and Anomalous Transport
,” Phys. Rep.
, 371
(6
), pp. 461
–580
.18.
Zaslavsky
, G. M.
, 2005
, “Hamiltonian Chaos and Fractional Dynamics
,” Oxford University Press, Oxford, UK.19.
Zaslavsky
, G. M.
, 2007
, The Physics of Chaos in Hamiltonian Systems
, Imperial College Press
, London, UK
.20.
Ben-Avraham
, D.
, and Havlin
, S.
, 2000
, Diffusion and Reactions in Fractals and Disordered Systems
, Cambridge University Press
, New York.21.
O'Shaughnessy
, B.
, and Procaccia
, I.
, 1985
, “Analytical Solutions for Diffusion on Fractal Objects
,” Phys. Rev. Lett.
, 54
(5
), p. 455
.22.
Mainardi
, F.
, Pagnini
, G.
, and Gorenflo
, R.
, 2007
, “Some Aspects of Fractional Diffusion Equation of Single and Distributed Order
,” Appl. Math. Comp.
, 187
(1
), pp. 295
–305
.23.
Gorenflo
, R.
, Mainardi
, F.
, Moretti
, D.
, Pagnini
, G.
, and Paradisi
, P.
, 2002
, “Discrete Random Walk Models for Space-Time Fractional Diffusion
,” Chem. Phys.
, 284
(1–2), pp. 521
–544
.24.
Gafiychuk
, V.
, and Datsko
, B.
, 2012
, “Different Types of Instabilities and Complex Dynamics in Reaction-Diffusion Systems With Fractional Derivatives
,” ASME J. Comput. Nonlinear Dyn.
, 7
(3
), p. 031001
.25.
Parvate
, A.
, Satin
, S.
, and Gangal
, A. D.
, 2011
, “Calculus on Fractal Curves in Rn
,” Fractals
, 19
(1
), pp. 15
–27
.26.
Golmankhaneh
, A. K.
, Golmankhaneh
, A. K.
, and Baleanu
, D.
, 2015
, “About Schrödinger Equation on Fractals Curves Imbedding in R3
,” Int. J. Theor. Phys.
, 54
(4
), pp. 1275
–1282
.27.
Golmankhaneh
, A. K.
, Golmankhaneh
, A. K.
, and Baleanu
, D.
, 2013
, “Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line
,” Int. J. Theor. Phys.
, 52
(11
), pp. 4210
–4217
.28.
Kolwankar
, K. M.
, and Gangal
, A. D.
, 1998
, “Local Fractional Fokker–Planck Equation
,” Phys. Rev. Lett.
, 80
(2
), p. 214
.29.
Kolwankar
, K. M.
, and Gangal
, A. D.
, 1996
, “Fractional Differentiability of Nowhere Differentiable Functions and Dimensions
,” Chaos: Interdiscip. J. Nonlinear Sci.
, 6
(4
), pp. 505
–513
.30.
Kolwankar
, K. M.
, and Gangal
, A. D.
, 1997
, “Hölder Exponents of Irregular Signals and Local Fractional Derivatives
,” Pramana
, 48
(1
), pp. 49
–68
.31.
Kolwankar
, K. M.
, and Gangal
, A. D.
, 1999
, “Local Fractional Calculus: A Calculus for Fractal Space-Time
,” Fractals
, Springer
, Berlin
, pp. 171
–181
.32.
Leo
, W. R.
, 1994
, Techniques for Nuclear and Particle Physics Experiments
, Springer-Verlag
, Berlin
.33.
Fano
, U.
, 1963
, “Penetration of Protons, Alpha Particles, and Mesons,” Ann. Rev. Nucl. Sci.
, 13
(1
), pp. 1–66.34.
Vavilov
, P. V.
, 1957
, “Ionization Losses of High-Energy heavy Particles,” Sov. Phys. JETP.
, 5
(4), pp. 749–751.35.
Symon
, K. R.
, 1948
, “Fluctuations in Energy Lost by High Energy Charged Particles in Passing through Matter,” Ph.D. thesis, Harvard University, Cambridge, MA.36.
Tsoulfanidis
, N.
, and Sheldon
, L.
, 2011
, Measurement and Detection of Radiation
, CRC Press
, Boca Raton, FL.37.
Knoll
, G. F.
, 2010
, Radiation Detection and Measurement
, Wiley
, Hoboken, NJ.38.
Payne
, M. G.
, 1969
, “Energy Straggling of Heavy Charged Particles in Thick Absorbers
,” Phys. Rev.
, 185
(2
), p. 611
.39.
Landau
, L.
, 1944
, “On the Energy Loss of Fast Particles by Ionization
,” J. Phys.
, 8
(4), pp. 201
–205
.40.
Hille
, E.
, and Tamarkin
, J. D.
, 1929
, “Remarks on a Known Example of a Monotone Continuous Function
,” Am. Math. Mon.
, 36
(5
), pp. 255
–264
.Copyright © 2017 by ASME
You do not currently have access to this content.