Abstract

Computational modeling of cardiac function has gradually progressed during the past four decades and now beginning to translate toward clinical use as a noninvasive mean of optimizing cardiac treatment options. Recent experimental findings and numerical investigations have suggested an important role of mechanical and intrinsic properties of cardiac tissues in overall electromechanical dynamics of the heart. The inertial effects, which were usually neglected in earlier computational studies, have now been found to alter cardiac dynamics through stretch activated channels (SAC) and can lead to cardiac disorders under specific set of physiological conditions. Considering possible role of inertia in cardiac dynamics, we have modeled electromechanical activity of the heart with inertia terms for computing pressure volume relation and action potentials over a complete cardiac cycle. To this end, we use the continuum balance laws to capture physiological function of the human left ventricle (LV) on an idealized geometry and solve the resulting equations using a python-based finite element platform. For the same set of pressure boundary conditions, the finite element models for quasi-static (less inertia) and dynamic (with inertia terms) formulation yielded a difference of 4.2% end diastolic volume (EDV), 3.1% ejection fraction, and variations in fiber strain pattern. The mechano-electric transduction channels sensitive to small mechanical perturbations in combination with changes in electrical conductivity due to deformation caused quantitative variations over cardiac electrical activity up to 2.75–5% reduction in action potential duration (APD) at 50% repolarization (APD50) and 3.5–5.75% reduction at 90% repolarization (APD90). Catering the effect of inertia can help the research community to improve future computational models in investigating the electromechanics of the heart.

References

1.
Mendis
,
S.
,
Puska
,
P.
,
Norrving
,
B.
, and World Health Organization,
2011
,
Global Atlas on Cardiovascular Disease Prevention and Control
,
World Health Organization
,
Geneva, Switzerland
.
2.
Costabal
,
F. S.
,
Concha
,
F. A.
,
Hurtado
,
D. E.
, and
Kuhl
,
E.
,
2017
, “
The Importance of Mechano-Electrical Feedback and Inertia in Cardiac Electromechanics
,”
Comput. Methods Appl. Mech. Eng.
,
320
, pp.
352
368
.
3.
Alnæs
,
M. S.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The FEniCS Project Version 1.5
,”
Archive Numer. Software
,
3
(
100
), pp.
9
23
.http://publications.lib.chalmers.se/records/fulltext/228672/local_228672.pdf
4.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Philos. Trans. R. Soc. A
,
367
(
1902
), pp.
3445
3475
.
5.
Weise
,
L. D.
, and
Panfilov
,
A. V.
,
2013
, “
Correction: A Discrete Electromechanical Model for Human Cardiac Tissue: Effects of Stretch-Activated Currents and Stretch Conditions on Restitution Properties and Spiral Wave Dynamics
,”
PloS One
,
8
(
3
),
31
(
5
), p.
e59317
.
6.
Demiray
,
H.
,
1976
, “
Stresses in Ventricular Wall
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
194
197
.
7.
Yin
,
F. C.
,
Strumpf
,
R. K.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
,
1987
, “
Quantification of the Mechanical Properties of Noncontracting Canine Myocardium Under Simultaneous Biaxial Loading
,”
J. Biomech.
,
20
(
6
), pp.
577
589
.
8.
Fung
,
Y. C.
,
1993
, “
Mechanical Properties and Active Remodeling of Blood Vessels
,”
Biomechanics
,
Springer
,
New York
, pp.
321
391
.
9.
Nash
,
M. P.
, and
Hunter
,
P. J.
,
2000
, “
Computational Mechanics of the Heart
,”
J. Elast. Phys. Sci. Solids
,
61
(
1/3
), pp.
113
141
.
10.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
McCulloch
,
A. D.
,
2001
, “
Modelling Cardiac Mechanical Properties in Three Dimensions
,”
Philos. Trans. R. Soc. London. Ser. A
,
359
(
1783
), pp.
1233
1250
.
11.
Bischoff
,
J. E.
,
Arruda
,
E. A.
, and
Grosh
,
K.
,
2002
, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
570
579
.
12.
Göktepe
,
S.
,
Acharya
,
S. N. S.
,
Wong
,
J.
, and
Kuhl
,
E.
,
2011
, “
Computational Modeling of Passive Myocardium
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
1
), pp.
1
12
.
13.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A. A.
, and
LeGrice
,
I. J.
,
2002
, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
283
(
6
), pp.
H2650
H2659
.
14.
Gao
,
H.
,
Li
,
W. G.
,
Cai
,
L.
,
Berry
,
C.
, and
Luo
,
X. Y.
,
2015
, “
Parameter Estimation in a Holzapfel–Ogden Law for Healthy Myocardium
,”
J. Eng. Math.
,
95
(
1
), pp.
231
248
.
15.
Reed
,
A.
,
Kohl
,
P.
, and
Peyronnet
,
R.
,
2014
, “
Molecular Candidates for Cardiac Stretch-Activated Ion Channels
,”
Global Cardiol. Sci. Pract.
,
2
, p.
19
.
16.
Li
,
W.
,
Kohl
,
P.
, and
Trayanova
,
N.
,
2004
, “
Induction of Ventricular Arrhythmias Following Mechanical Impact: A Simulation Study in 3D
,”
J. Mol. Histol.
,
35
(
7
), pp.
679
686
.
17.
Bayer
,
J. D.
,
Blake
,
R. C.
,
Plank
,
G.
, and
Trayanova
,
N. A.
,
2012
, “
A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2243
2254
.
18.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve
,”
J. Physiol.
,
117
(
4
), pp.
500
544
.
19.
Niederer
,
S. A.
,
Kerfoot
,
E.
,
Benson
,
A. P.
,
Bernabeu
,
M. O.
,
Bernus
,
O.
,
Bradley
,
C.
,
Cherry
,
E. M.
,
Clayton
,
R.
,
Fenton
,
F. H.
,
Garny
,
A.
,
Heidenreich
,
E.
,
Land
,
S.
,
Maleckar
,
M.
,
Pathmanathan
,
P.
,
Plank
,
G.
,
Rodriguez
,
J. F.
,
Roy
,
I.
,
Sachse
,
F. B.
,
Seemann
,
G.
,
Skavhaug
,
O.
, and
Smith
,
N. P.
,
2011
, “
Verification of Cardiac Tissue Electrophysiology Simulators Using an N-Version Benchmark
,”
Philos. Trans. R. Soc. A
,
369
(
1954
), pp.
4331
4351
.
20.
Xia
,
H.
,
Wong
,
K.
, and
Zhao
,
X.
,
2012
, “
A Fully Coupled Model for Electromechanics of the Heart
,”
Comput. Math. Methods Med.
,
2012
, p.
927279
.
21.
Ten Tusscher
,
K. H.
, and
Panfilov
,
A. V.
,
2006
, “
Alternans and Spiral Breakup in a Human Ventricular Tissue Model
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
291
(
3
), pp.
H1088
H1100
.
22.
Quarteroni
,
A. L. F. I. O.
,
Manzoni
,
A.
, and
Vergara
,
C.
,
2017
, “
The Cardiovascular System: Mathematical Modelling, Numerical Algorithms and Clinical Applications
,”
Acta Numer.
,
26
, pp.
365
590
.
23.
Keldermann
,
R. H.
,
Nash
,
M. P.
, and
Panfilov
,
A. V.
,
2007
, “
Pacemakers in a Reaction-Diffusion Mechanics System
,”
J. Stat. Phys.
,
128
(
1–2
), pp.
375
392
.
24.
Peterson
,
D. R.
, and
Bronzino
,
J. D.
, eds.,
2007
,
Biomechanics: Principles and Applications
,
CRC Press
,
New York
, pp.
8
3
.
25.
Sundnes
,
J.
,
Lines
,
G. T.
,
Cai
,
X.
,
Nielsen
,
B. F.
,
Mardal
,
K. A.
, and
Tveito
,
A.
,
2007
,
Computing the Electrical Activity in the Heart
, Vol.
1
,
Springer Science and Business Media
,
Berlin
, pp.
70
78
.
26.
Tsanas
,
A.
,
Goulermas
,
J. Y.
,
Vartela
,
V.
,
Tsiapras
,
D.
,
Theodorakis
,
G.
,
Fisher
,
A. C.
, and
Sfirakis
,
P.
,
2009
, “
The Windkessel Model Revisited: A Qualitative Analysis of the Circulatory System
,”
Med. Eng. Phys.
,
31
(
5
), pp.
581
588
.
27.
Royse
,
C. F.
, and
Royse
,
A. G.
,
2005
, “
The Myocardial and Vascular Effects of Bupivacaine, Levobupivacaine, and Ropivacaine Using Pressure Volume Loops. Anesthesia and
,”
Analgesia
,
101
(
3
), pp.
679
687
.
28.
Land
,
S.
,
Gurev
,
V.
,
Arens
,
S.
,
Augustin
,
C. M.
,
Baron
,
L.
,
Blake
,
R.
,
Bradley
,
C.
,
Castro
,
S.
,
Crozier
,
A.
,
Favino
,
M.
,
Fastl
,
T. E.
,
Fritz
,
T.
,
Gao
,
H.
,
Gizzi
,
A.
,
Griffith
,
B. E.
,
Hurtado
,
D. E.
,
Krause
,
R.
,
Luo
,
X.
,
Nash
,
M. P.
,
Pezzuto
,
S.
,
Plank
,
G.
,
Rossi
,
S.
,
Ruprecht
,
D.
,
Seemann
,
G.
,
Smith
,
N. P.
,
Sundnes
,
J.
,
Rice
,
J. J.
,
Trayanova
,
N.
,
Wang
,
D.
,
Jenny Wang
,
Z.
, and
Niederer
,
S. A.
,
2015
, “
Verification of Cardiac Mechanics Software: Benchmark Problems and Solutions for Testing Active and Passive Material Behaviour
,”
Proc. R. Soc. A
,
471
(
2184
), p.
20150641
.
29.
Eriksson
,
T. S.
,
Prassl
,
A. J.
,
Plank
,
G.
, and
Holzapfel
,
G. A.
,
2013
, “
Influence of Myocardial Fiber/Sheet Orientations on Left Ventricular Mechanical Contraction
,”
Math. Mech. Solids
,
18
(
6
), pp.
592
606
.
30.
Johnson
,
C.
,
2012
,
Numerical Solution of Partial Differential Equations by the Finite Element Method
,
Courier Corporation
,
Chelmsford, MA
.
31.
Langtangen
,
H. P.
,
2013
,
Computational Partial Differential Equations: Numerical Methods and Diffpack Programming
, Vol.
2
,
Springer Science and Business Media
,
Berlin
.
You do not currently have access to this content.