Abstract

Since the discovery of parametric anti-resonance, parametric excitation has also become more prominent for its stabilizing properties. While resonance and anti-resonance are mostly studied individually, there are systems where both effects appear simultaneously at each combination resonance frequency. With a steep transition between them and a high sensitivity of their relative positions, there is a need for a concurrent study of resonance and anti-resonance. The semi-analytical method of normal forms is used to derive approximate analytical expressions describing the magnitude of the stability impact as well as the precise locations of stabilized and destabilized areas. The results reveal that the separate appearance of resonance and anti-resonance is only a special case occurring for synchronous parametric excitation. In particular, in circulatory systems the simultaneous appearance is expected to be much more common.

References

1.
Tondl
,
A.
,
1978
,
On the Interaction Between Self-Excited and Parametric Vibrations (Monographs and Memoranda 25)
,
National Research Institute for Machine Design
,
Prague, Czech Republic
.
2.
Dohnal
,
F.
,
2012
, “
A Contribution to the Mitigation of Transient Vibrations. Parametric Anti-Resonance: Theory, Experiment and Interpretation
,” Habilitation thesis, Technical University of Darmstadt, Darmstadt, Germany.
3.
Dohnal
,
F.
,
Pfau
,
B.
, and
Chasalevris
,
A.
,
2015
, “
Analytical Predictions of a Flexible Rotor in Journal Bearings With Adjustable Geometry to Suppress Bearing Induced Instabilities
,”
13th International Conference, Dynamical Systems—Theory and Applications
(DSTA 2015), Łódź, Poland, Dec. 7–10, pp.
149
160
.https://www.researchgate.net/publication/282734398_Analytical_predictions_of_a_flexible_rotor_in_journal_bearings_with_adjustable_geometry_to_suppress_bearing_induced_instabilities
4.
Cesari
,
L.
,
1940
,
Sulla Stabilità Delle Soluzioni Dei Sistemi di Equazioni Differenziali Lineari a Coefficienti Periodici (On the Stability of Systems of Linear Differential Equations With Periodic Coefficients)
,
Reale Accademia D'Italia
,
Rome, Italy
.
5.
Eicher
,
N.
,
1984
, “
Parameterresonanzen 1. und 2. Art bei Schwingungssystemen mit allgemeinen harmonischen Erregermatrizen (Parametric Resonances of First and Second Kind in Vibration Systems With General Harmonic Excitation Matrices)
,”
Ing.-Arch.
,
54
(
3
), pp.
188
204
.10.1007/BF00555659
6.
Schmieg
,
H.
,
1981
, “
Kombinationsresonanz bei Systemen mit allgemeiner harmonischer Erregermatrix (Combination Resonance in Systems With General Harmonic Excitation Matrix)
,” Ph.D. thesis, University of Karlsruhe, Karlsruhe, Germany.
7.
Mettler
,
E.
,
1968
, “
Combination Resonances in Mechanical Systems Under Harmonic Excitation
,”
Proceedings of the Fourth International Conference on Nonlinear Oscillations
, Academia Publication House of the Czech Academy of Sciences,
Prague, Czechoslovakia
, Sept. 5–9, pp.
51
70
.
8.
Karev
,
A.
, and
Hagedorn
,
P.
,
2019
, “
Global Stability Effects of Parametric Excitation
,”
J. Sound Vib.
,
448
, pp.
34
52
.10.1016/j.jsv.2019.02.014
9.
Hochlenert
,
D.
,
2012
, “
Normalformen und Einzugsbereiche nichtlinearer dynamischer Systeme: Beispiele und technische Anwendungen (Normal Forms and Domains of Attraction of Nonlinear Dynamical Systems: Examples and Technical Applications)
,” Habilitation thesis, Technische Universität Berlin, Berlin, Germany.
10.
Karev
,
A.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2018
, “
Asynchronous Parametric Excitation, Total Instability and Its Occurrence in Engineering Structures
,”
J. Sound Vib.
,
428
, pp.
1
12
.10.1016/j.jsv.2018.05.003
11.
Eicher
,
N.
,
1984
,
Ein Iterationsverfahren zur Berechnung des Stabilitätsverhaltens zeitvarianter Schwingungssysteme (An Iterative Method for Analysis of Stability Behavior of Time-Varying Vibration Systems)
,
Fortschritt-Berichte VDI
,
Schwingungstechnik, Lärmbekämpfung, VDI-Verlag
,
Düsseldorf, Germany
.
12.
Hale
,
J.
,
1969
,
Ordinary Differential Equations (Pure and Applied Mathematics)
,
Wiley-Interscience
,
New York
.
13.
Lyapunov
,
A.
,
1950
,
General Problem of the Stability of Motion (in Russian)
,
Classics of Natural Science. Gos. izd-vo Tekhniko-Teoret. lit-ry
,
Moscow, Leningrad, Russia
.
14.
Bylov
,
B.
,
Vinograd
,
R.
,
Grobman
,
D.
, and
Nemytskii
,
V.
,
1966
,
The Theory of Lyapunov Exponents and Its Applications to Problems of Stability (in Russian)
,
Nauka
,
Moscow, Russia
.
15.
Murdock
,
J.
,
2010
,
Normal Forms and Unfoldings for Local Dynamical Systems (Springer Monographs in Mathematics)
,
Springer
,
New York
.
16.
Nayfeh
,
A.
,
1993
,
Method of Normal Forms
,
Wiley
,
New York
.
17.
Dohnal
,
F.
,
2009
, “
Damping of Mechanical Vibrations by Parametric Excitation: Parametric Resonance and Anti-Resonance
,”
Südwestdeutscher Verlag, Germany
.
You do not currently have access to this content.