Abstract

The 1/3 subharmonic resonance response of Duffing oscillator with Coulomb dry friction under foundation excitation is investigated, and the approximate analytical solution of the subharmonic resonance of the system is obtained by using the incremental averaging method. Based on the approximate analytical solution of the primary resonance obtained by the averaging method, the approximate analytical solution of subharmonic resonance is solved by the averaging method according to the incremental equation, and the amplitude–frequency response equation of subharmonic resonance is obtained. It is found that the Coulomb friction affects the amplitude–frequency response of both the primary resonance and subharmonic resonance of the nonlinear dry friction system in the form of equivalent damping. The comparison between the approximate analytical solution and the numerical solution shows that the approximate analytical solutions of the primary resonance and subharmonic resonance are both in very good agreement with the numerical solution. The existence condition of the 1/3 subharmonic resonance for the nonlinear dry friction system is presented, and the stability of the steady-state solution of subharmonic resonance is also judged. Based on the approximate analytical solution, the effects of the nonlinear stiffness and the Coulomb friction on the amplitude–frequency response of resonance and critical frequency of 1/3 subharmonic resonance of the nonlinear dry friction system are analyzed in detail. The analysis results show that the incremental averaging method can effectively obtain the approximate analytical solution in unified form for the subharmonic resonance of nonlinear system with Coulomb friction.

References

1.
Lobontiu
,
N.
,
2010
,
System Dynamics for Engineering Students
,
Academic Press
,
Burlington
.
2.
Berger
,
E. J.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.10.1115/1.1501080
3.
Awrejcewicz
,
J.
, and
Olejnik
,
P.
,
2005
, “
Analysis of Dynamic Systems With Various Friction Laws
,”
Appl. Mech. Rev.
,
58
(
6
), pp.
389
410
.10.1115/1.2048687
4.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.10.1007/s11071-015-2485-3
5.
Marques
,
F.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.10.1007/s11071-016-2999-3
6.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
.10.1115/1.3097294
7.
Den Hartog
,
J. P.
,
1930
, “
Forced Vibration With Combined Viscous and Coulomb Damping
,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
, 9(59), pp. 801–817.10.1080/14786443008565051
8.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME. Appl. Mech. Rev
,
47
(
7
), pp.
227
253
.10.1115/1.3111080
9.
Shaw
,
S. W.
,
1986
, “
On the Dynamic Response of a System With Dry Friction
,”
J. Sound Vib.
,
108
(
2
), pp.
305
325
.10.1016/S0022-460X(86)80058-X
10.
Elmer
,
F.-J.
,
1997
, “
Nonlinear Dynamics of Dry Friction
,”
J. Phys. A: Math. General
,
30
(
17
), pp.
6057
6063
.10.1088/0305-4470/30/17/015
11.
Hong
,
H.-K.
, and
Liu
,
C.-S.
,
2000
, “
Coulomb Friction Oscillator: Modelling and Responses to Harmonic Loads and Base Excitations
,”
J. Sound Vib.
,
229
(
5
), pp.
1171
1192
.10.1006/jsvi.1999.2594
12.
Cheng
,
G.
, and
Zu
,
J. W.
,
2004
, “
Dynamics of a Dry Friction Oscillator Under Two-Frequency Excitations
,”
J. Sound Vib.
,
275
(
3–5
), pp.
591
603
.10.1016/j.jsv.2003.06.027
13.
Yang
,
S. P.
, and
Guo
,
S. Q.
,
2010
, “
Two-Stop-Two-Slip Motions of a Dry Friction Oscillator
,”
Sci. China Technol. Sci.
,
53
(
3
), pp.
623
632
.10.1007/s11431-010-0080-x
14.
Fu
,
S.
, and
Lu
,
Q.
,
2012
, “
Nonlinear Dynamics and Vibration Reduction of a Dry Friction Oscillator With SMA Restraints
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1365
1381
.10.1007/s11071-012-0353-y
15.
Yadav
,
O. P.
, and
Vyas
,
N. S.
,
2021
, “
Stick–Slips and Jerks in an SDOF System With Dry Friction and Clearance
,”
Int. J. Non-Linear Mech.
,
137
, p.
103790
.10.1016/j.ijnonlinmec.2021.103790
16.
Wang
,
S.
,
Hong
,
L.
, and
Jiang
,
J.
,
2021
, “
Analytical Prediction on Stick-Slip Whirling Oscillations Induced by Dry Friction Between a Rotating Imbalanced Rotor and a Flexibly Supported Stator
,”
J. Sound Vib.
,
511
, p.
116333
.10.1016/j.jsv.2021.116333
17.
Chatelet
,
E.
,
Michon
,
G.
,
Manin
,
L.
, and
Jacquet
,
G.
,
2008
, “
Stick/Slip Phenomena in Dynamics: Choice of Contact Model. Numerical Predictions & Experiments
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1211
1224
.10.1016/j.mechmachtheory.2007.11.001
18.
Liu
,
C. S.
, and
Chang
,
W. T.
,
2002
, “
Frictional Behaviour of a Belt-Driven and Periodically Excited Oscillator
,”
J. Sound Vib.
,
258
(
2
), pp.
247
268
.10.1006/jsvi.2002.5108
19.
Wang
,
H.
,
Chen
,
Z.
,
Li
,
Z.
,
Chu
,
Z.
,
Li
,
J.
, and
Lin
,
Y.
,
2021
, “
Perturbation Incremental Method of Limit Cycle for a Nonlinear Conveyor Belt System
,”
Nonlinear Dyn
,
104
(
4
), pp.
3533
3545
.10.1007/s11071-021-06573-2
20.
Li
,
J.
,
Cao
,
D.
, and
Pan
,
K.
,
2020
, “
Dry-Friction-Induced Self-Excitation of a Rectangular Liquid-Filled Tank
,”
Nonlinear Dyn
,
102
(
3
), pp.
1337
1359
.10.1007/s11071-020-05971-2
21.
Wang
,
J. H.
, and
Chen
,
W. K.
,
1993
, “
Investigation of the Vibration of a Blade With Friction Damper by HBM
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
294
299
.10.1115/1.2906708
22.
Mualla
,
I. H.
, and
Belev
,
B.
,
2002
, “
Performance of Steel Frames With a New Friction Damper Device Under Earthquake Excitation
,”
Eng. Struct.
,
24
(
3
), pp.
365
371
.10.1016/S0141-0296(01)00102-X
23.
Bhaskararao
,
A. V.
, and
Jangid
,
R. S.
,
2006
, “
Harmonic Response of Adjacent Structures Connected With a Friction Damper
,”
J. Sound Vib.
,
292
(
3–5
), pp.
710
725
.10.1016/j.jsv.2005.08.029
24.
Golafshani
,
A. A.
, and
Gholizad
,
A.
,
2009
, “
Friction Damper for Vibration Control in Offshore Steel Jacket Platforms
,”
J. Constr. Steel Res.
,
65
(
1
), pp.
180
187
.10.1016/j.jcsr.2008.07.008
25.
Edhi
,
E.
, and
Hoshi
,
T.
,
2001
, “
Stabilization of High Frequency Chatter Vibration in Fine Boring by Friction Damper
,”
Precis. Eng.
,
25
(
3
), pp.
224
234
.10.1016/S0141-6359(01)00074-5
26.
Liao
,
H.
, and
Gao
,
G.
,
2014
, “
A New Method for Blade Forced Response Analysis With Dry Friction Dampers
,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1171
1174
.10.1007/s12206-014-0105-7
27.
Suy
,
H. M. R.
,
Fey
,
R. H. B.
,
Galanti
,
F. M. B.
, and
Nijmeijer
,
H.
,
2007
, “
Nonlinear Dynamic Analysis of a Structure With a Friction-Based Seismic Base Isolation System
,”
Nonlinear Dyn.
,
50
(
3
), pp.
523
538
.10.1007/s11071-006-9182-1
28.
Seong
,
J. Y.
,
Min
,
K. W.
, and
Kim
,
J. C.
,
2012
, “
Analytical Investigation of an SDOF Building Structure Equipped With a Friction Damper
,”
Nonlinear Dyn.
,
70
(
1
), pp.
217
229
.10.1007/s11071-012-0446-7
29.
Zhu
,
H.
,
Yang
,
J.
,
Zhang
,
Y.
,
Feng
,
X.
, and
Ma
,
Z.
,
2017
, “
Nonlinear Dynamic Model of Air Spring With a Damper for Vehicle Ride Comfort
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1545
1568
.10.1007/s11071-017-3535-9
30.
Donmez
,
A.
,
Cigeroglu
,
E.
, and
Ozgen
,
G. O.
,
2020
, “
An Improved Quasi-Zero Stiffness Vibration Isolation System Utilizing Dry Friction Damping
,”
Nonlinear Dyn.
,
101
(
1
), pp.
107
121
.10.1007/s11071-020-05685-5
31.
Nayfeah
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
New York
.
32.
Zounes
,
R. S.
, and
Rand
,
R. H.
,
2002
, “
Subharmonic Resonance in the Non-Linear Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
37
(
1
), pp.
43
73
.10.1016/S0020-7462(00)00095-0
33.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2004
, “
Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations
,”
Nonlinear Dyn.
,
35
(
2
), pp.
105
122
.10.1023/B:NODY.0000020878.34039.d4
34.
Vakakis
,
A. F.
,
1992
, “
Fundamental and Subharmonic Resonances in a System With a ‘1-1’ Internal Resonance
,”
Nonlinear Dyn.
,
3
(
2
), pp.
123
143
.10.1007/BF00118989
35.
Van Khang
,
N.
, and
Chien
,
T. Q.
,
2016
, “
Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
ASME. J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051018
.10.1115/1.4032854
36.
Niu
,
J.
,
Li
,
X.
, and
Xing
,
H.
,
2019
, “
Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
7
), p.
071005
.10.1115/1.4043523
37.
Niu
,
J.
,
Zhang
,
W.
,
Shen
,
Y.
, and
Yang
,
S.
,
2020
, “
Subharmonic Resonance of Single-Degree-of-Freedom Piecewise-Smooth Nonlinear Oscillator
,”
Acta Mech. Sin.
,
36
(
5
), pp.
1109
1118
.10.1007/s10409-020-00984-x
38.
Wong
,
C. W.
,
Zhang
,
W. S.
, and
Lau
,
S. L.
,
1991
, “
Periodic Forced Vibration of Unsymmetrical Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
149
(
1
), pp.
91
105
.10.1016/0022-460X(91)90913-5
39.
Csernák
,
G.
,
Stépán
,
G.
, and
Shaw
,
S. W.
,
2007
, “
Sub-Harmonic Resonant Solutions of a Harmonically Excited Dry Friction Oscillator
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
93
109
.10.1007/s11071-006-9145-6
40.
Kong
,
X.
,
Sun
,
W.
,
Wang
,
B.
, and
Wen
,
B.
,
2015
, “
Dynamic and Stability Analysis of the Linear Guide With Time-Varying, Piecewise-Nonlinear Stiffness by Multi-Term Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
346
, pp.
265
283
.10.1016/j.jsv.2015.02.021
41.
Ji
,
J. C.
, and
Hansen
,
C. H.
,
2005
, “
On the Approximate Solution of a Piecewise Nonlinear Oscillator Under Super-Harmonic Resonance
,”
J. Sound Vib.
,
283
(
1–2
), pp.
467
474
.10.1016/j.jsv.2004.05.033
42.
Duan
,
C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2007
, “
Sub-Harmonic Resonance in a Nearly Pre-Loaded Mechanical Oscillator
,”
Nonlinear Dyn.
,
50
(
3
), pp.
639
650
.10.1007/s11071-006-9185-y
43.
Sun
,
X.
,
Zhang
,
H.
,
Meng
,
W.
,
Zhang
,
R.
,
Li
,
K.
, and
Peng
,
T.
,
2018
, “
Primary Resonance Analysis and Vibration Suppression for the Harmonically Excited Nonlinear Suspension System Using a Pair of Symmetric Viscoelastic Buffers
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1243
1265
.10.1007/s11071-018-4421-9
44.
Dangor
,
M.
,
Dahunsi
,
O. A.
,
Pedro
,
J. O.
, and
Ali
,
M. M.
,
2014
, “
Evolutionary Algorithm-Based PID Controller Tuning for Nonlinear Quarter-Car Electrohydraulic Vehicle Suspensions
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2795
2810
.10.1007/s11071-014-1626-4
45.
Stanway
,
R.
,
Sproston
,
J. L.
, and
Stevens
,
N. G.
,
1987
, “
Non-Linear Modelling of an Electro-Rheological Vibration Damper
,”
J. Electrostat.
,
20
(
2
), pp.
167
184
.10.1016/0304-3886(87)90056-8
46.
Ahn
,
K. K.
,
Truong
,
D. Q.
, and
Islam
,
M. A.
,
2009
, “
Modeling of a Magneto-Rheological (MR) Fluid Damper Using a Self Tuning Fuzzy Mechanism
,”
J. Mech. Sci. Technol.
,
23
(
5
), pp.
1485
1499
.10.1007/s12206-009-0359-7
47.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
J. Appl. Mech.
,
52
(
4
), pp.
958
964
.10.1115/1.3169175
You do not currently have access to this content.