Abstract

The high penetration of renewable energy resources (RESs) based microgrids (MGs) into the modern power system brings severe system frequency fluctuations due to RESs uncertain nature. In such cases, supplying an MG model with an effective load frequency control (LFC) plays a crucial part in regaining the stability of the electrical network. In this work, a wind turbine generator (WTG) and diesel generator (DEG) are efficiently planned as autonomous diesel wind energy-based microgrid (DWMG). A wind-contributed dynamic model, speed regulator, and proportional-integral-derivative (PID) frequency controller are designed to make the WTG system aware of power fluctuations. Additionally, an integral type sliding mode control (I-SMC) is designed to generate the supplementary control action for the frequency regulation against the load and source uncertainties. A recently invented artificial gorilla troops optimizer (GTO) is utilized to obtain the controller parameters. The results reveal the proposed method's benefits, such as least frequency deviations, shorter settling time, and minimum integral errors over state-of-the-art methodologies.

References

1.
Alegria
,
E.
,
Brown
,
T.
,
Minear
,
E.
, and
Lasseter
,
R. H.
,
2014
, “
CERTS Microgrid Demonstration With Large-Scale Energy Storage and Renewable Generation
,”
IEEE Trans. Smart Grid
,
5
(
2
), pp.
937
943
.10.1109/TSG.2013.2286575
2.
Hirsch
,
A.
,
Parag
,
Y.
, and
Guerrero
,
J.
,
2018
, “
Microgrids: A Review of Technologies, Key Drivers, and Outstanding Issues
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
402
411
.10.1016/j.rser.2018.03.040
3.
GWEC,
2021
, “
Global Wind Report on Annual Market Global Wind Energy Council
,” Global Wind Energy Council.
4.
Abazari
,
A.
,
Monsef
,
H.
, and
Wu
,
B.
,
2019
, “
Coordination Strategies of Distributed Energy Resources Including FESS, DEG, FC and WTG in Load Frequency Control (LFC) Scheme of Hybrid Isolated Micro-Grid
,”
Int. J. Electr. Power Energy Syst.
,
109
, pp.
535
547
.10.1016/j.ijepes.2019.02.029
5.
Li
,
H.
,
Qiao
,
Y.
,
Lu
,
Z.
,
Zhang
,
B.
, and
Teng
,
F.
,
2021
, “
Frequency-Constrained Stochastic Planning Towards a High Renewable Target Considering Frequency Response Support From Wind Power
,”
IEEE Trans. Power Syst.
,
36
(
5
), pp.
4632
4644
.10.1109/TPWRS.2021.3066991
6.
Wu
,
B.
,
Lang
,
Y.
,
Zargari
,
N.
, and
Kouro
,
S.
,
2011
,
Power Conversion and Control of Wind Energy Systems
,
Wiley-IEEE Press
,
New York
.
7.
Dreidy
,
M.
,
Mokhlis
,
H.
, and
Mekhilef
,
S.
, March
2017
, “
Inertia Response and Frequency Control Techniques for Renewable Energy Sources: A Review
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
144
155
.10.1016/j.rser.2016.11.170
8.
Vidyanandan
,
K. V.
, and
Senroy
,
N.
,
2013
, “
Primary Frequency Regulation by Deloaded Wind Turbines Using Variable Droop
,”
IEEE Trans. Power Syst.
,
28
(
2
), pp.
837
846
.10.1109/TPWRS.2012.2208233
9.
Ramesh
,
M.
,
Yadav
,
A. K.
, and
Pathak
,
P. K.
,
2021
, “
An Extensive Review on Load Frequency Control of Solar-Wind Based Hybrid Renewable Energy Systems
,”
Energy Sources, Part A Recov., Util., Environ. Eff.
, pp.
1
25
.
10.
Lee
,
D. J.
, and
Wang
,
L.
,
2008
, “
Small-Signal Stability Analysis of an Autonomous Hybrid Renewable Energy Power Generation/Energy Storage System Part I: Time-Domain Simulations
,”
IEEE Trans. Energy Conver.
,
23
(
1
), pp.
311
320
.10.1109/TEC.2007.914309
11.
Bevrani
,
H.
,
Habibi
,
F.
,
Babahajyani
,
P.
,
Watanabe
,
M.
, and
Mitani
,
Y.
,
2012
, “
Intelligent Frequency Control in an AC Microgrid: Online PSO-Based Fuzzy Tuning Approach
,”
IEEE Trans. Smart Grid
,
3
(
4
), pp.
1935
1944
.10.1109/TSG.2012.2196806
12.
Das
,
D. C.
,
Roy
,
A. K.
, and
Sinha
,
N.
,
2012
, “
GA Based Frequency Controller for Solar Thermal–Diesel–Wind Hybrid Energy Generation/Energy Storage System
,”
Int. J. Electr. Power Energy Syst.
,
43
(
1
), pp.
262
279
.10.1016/j.ijepes.2012.05.025
13.
Nandar
,
C. S. A.
,
2013
, “
Robust PI Control of Smart Controllable Load for Frequency Stabilization of Microgrid Power System
,”
Renewable Energy
,
56
, pp.
16
23
.10.1016/j.renene.2012.10.032
14.
Mishra
,
S.
,
Mallesham
,
G.
, and
Jha
,
A. N.
,
2012
, “
Design of Controller and Communication for Frequency Regulation of a Smart Microgrid
,”
IET Renewable Power Gener.
,
6
(
4
), pp.
248
258
.10.1049/iet-rpg.2011.0165
15.
Mishra
,
S.
,
Mallesham
,
G.
, and
Sekhar
,
P. C.
,
2013
, “
Biogeography Based Optimal State Feedback Controller for Frequency Regulation of a Smart Microgrid
,”
IEEE Trans. Smart Grid
,
4
(
1
), pp.
628
637
.10.1109/TSG.2012.2236894
16.
Pan
,
I.
, and
Das
,
S.
,
2015
, “
Kriging Based Surrogate Modeling for Fractional Order Control of Microgrids
,”
IEEE Trans. Smart Grid
,
6
(
1
), pp.
36
44
.10.1109/TSG.2014.2336771
17.
Pan
,
I.
, and
Das
,
S.
,
2016
, “
Fractional Order AGC for Distributed Energy Resources Using Robust Optimization
,”
IEEE Trans. Smart Grid
,
7
(
5
), pp.
2175
2186
.10.1109/TSG.2015.2459766
18.
Shankar
,
G.
, and
Mukherjee
,
V.
,
2016
, “
Load Frequency Control of an Autonomous Hybrid Power System by Quasi-Oppositional Harmony Search Algorithm
,”
Int. J. Electr. Power Energy Syst.
,
78
, pp.
715
734
.10.1016/j.ijepes.2015.11.091
19.
Khalghani
,
M. R.
,
Khooban
,
M. H.
,
Mahboubi-Moghaddam
,
E.
,
Vafamand
,
N.
, and
Goodarzi
,
M.
,
2016
, “
A Self-Tuning Load Frequency Control Strategy for Microgrids: Human Brain Emotional Learning
,”
Int. J. Electr. Power Energy Syst.
,
75
, pp.
311
319
.10.1016/j.ijepes.2015.08.026
20.
Mohanty
,
S. R.
,
Kishor
,
N.
, and
Ray
,
P. K.
,
2014
, “
Robust H-Infinite Loop Shaping Controller Based on Hybrid PSO and Harmonic Search for Frequency Regulation in Hybrid Distributed Generation System
,”
Int. J. Electr. Power Energy Syst.
,
60
, pp.
302
316
.10.1016/j.ijepes.2014.03.012
21.
Ali
,
R.
,
Mohamed
,
T. H.
,
Qudaih
,
Y. S.
, and
Mitani
,
Y.
,
2014
, “
A New Load Frequency Control Approach in an Isolated Small Power System Using Coefficient Diagram Method
,”
Int. J. Electr. Power Energy Syst.
,
56
, pp.
110
116
.10.1016/j.ijepes.2013.11.002
22.
Khooban
,
M. H.
,
Niknam
,
T.
,
Shasadeghi
,
M.
,
Dragicevic
,
T.
, and
Blaabjerg
,
F.
,
2018
, “
Load Frequency Control in Microgrids Based on a Stochastic Noninteger Controller
,”
IEEE Trans. Sustainable Energy
,
9
(
2
), pp.
853
861
.10.1109/TSTE.2017.2763607
23.
Latif
,
A.
,
Das
,
D. C.
,
Ranjan
,
S.
, and
Barik
,
A. K.
,
2019
, “
Comparative Performance Evaluation of WCA-Optimised Non-Integer Controller Employed With WPG–DSPG–PHEV Based Isolated Two-Area Interconnected Microgrid System
,”
IET Renewable Power Gener.
,
13
(
5
), pp.
725
736
.10.1049/iet-rpg.2018.5419
24.
Sivalingam
,
R.
,
Chinnamuthu
,
S.
, and
Dash
,
S. S.
,
2017
, “
A Modified Whale Optimization Algorithm-Based Adaptive Fuzzy Logic PID Controller for Load Frequency Control of Autonomous Power Generation Systems
,”
Automatika
,
58
(
4
), pp.
410
421
.10.1080/00051144.2018.1465688
25.
Annamraju
,
A.
, and
Nandiraju
,
S.
,
2018
, “
Robust Frequency Control in an Autonomous Microgrid: A Two-Stage Adaptive Fuzzy Approach
,”
Elect. Power Compon. Syst.
,
46
(
1
), pp.
83
94
.10.1080/15325008.2018.1432723
26.
C
,
S.
,
Yammani
,
C.
, and
Maheswarapu
,
S.
,
2019
, “
Load Frequency Control of Multi-Microgrid System Considering Renewable Energy Sources Using Grey Wolf Optimization
,”
Smart Sci.
,
7
(
3
), pp.
198
217
.10.1080/23080477.2019.1630057
27.
Barik
,
A. K.
, and
Das
,
D. C.
,
2018
, “
Expeditious Frequency Control of Solar Photovoltaic/Biogas/Biodiesel Generator Based Isolated Renewable Microgrid Using Grasshopper Optimisation Algorithm
,”
IET Renewable Power Gener.
,
12
(
14
), pp.
1659
1667
.10.1049/iet-rpg.2018.5196
28.
Rajesh
,
K. S.
, and
Dash
,
S. S.
,
2019
, “
Load Frequency Control of Autonomous Power System Using Adaptive Fuzzy Based PID Controller Optimized on Improved Sine Cosine Algorithm
,”
J. Ambient Intell. Human. Comput.
,
10
(
6
), pp.
2361
2373
.10.1007/s12652-018-0834-z
29.
Arya
,
Y.
,
2019
, “
Effect of Energy Storage Systems on Automatic Generation Control of Interconnected Traditional and Restructured Energy Systems
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6475
6493
.10.1002/er.4493
30.
Dhundhara
,
S.
, and
Verma
,
Y. P.
,
2020
, “
Application of Micro Pump Hydro Energy Storage for Reliable Operation of Microgrid System
,”
IET Renewable Power Gener.
,
14
(
8
), pp.
1368
1378
.10.1049/iet-rpg.2019.0822
31.
Khokhar
,
B.
,
Dahiya
,
S.
, and
Singh Parmar
,
K. P.
,
2020
, “
A Robust Cascade Controller for Load Frequency Control of a Standalone Microgrid Incorporating Electric Vehicles
,”
Electric Power Compon. Syst.
,
48
(
6–7
), pp.
711
726
.10.1080/15325008.2020.1797936
32.
Ramesh
,
M.
,
Yadav
,
A. K.
, and
Pathak
,
P. K.
,
2021
, “
Intelligent Adaptive LFC Via Power Flow Management of Integrated Standalone Micro-Grid System
,”
ISA Trans.
,
112
, pp.
234
250
.10.1016/j.isatra.2020.12.002
33.
Sariki
,
M.
, and
Shankar
,
R.
,
2022
, “
Optimal CC-2DOF (PI)-PDF Controller for LFC of Restructured Multi-Area Power System With IES-Based Modified HVDC Tie-Line and Electric Vehicles
,”
Eng. Sci. Technol., Int. J.
,
32
, p.
101058
.10.1016/j.jestch.2021.09.004
34.
Pathak
,
P. K.
,
Yadav
,
A. K.
,
Shastri
,
A.
, and
Alvi
,
P. A.
,
2022
, “
BWOA Assisted PIDF-(1+ I) Controller for Intelligent Load Frequency Management of Standalone Micro-Grid
,”
ISA Trans
.
35.
Chang-Chien
,
L. R.
,
Sun
,
C. C.
, and
Yeh
,
Y. J.
,
2014
, “
Modeling of Wind Farm Participation in AGC
,”
IEEE Trans. Power Syst.
,
29
(
3
), pp.
1204
1211
.10.1109/TPWRS.2013.2291397
36.
Gholamrezaie
,
V.
,
Dozein
,
M. G.
,
Monsef
,
H.
, and
Wu
,
B.
,
2018
, “
An Optimal Frequency Control Method Through a Dynamic Load Frequency Control (LFC) Model Incorporating Wind Farm
,”
IEEE Syst. J.
,
12
(
1
), pp.
392
401
.10.1109/JSYST.2016.2563979
37.
Ramesh
,
M.
, and
Yadav
,
A. K.
,
2022
, “
Wind Contributed Load Frequency Control Scheme for Standalone Microgrid Using Grey Wolf Optimization
,”
IEEE Delhi Section Conference (DELCON)
,
NSUT
,
New Delhi
, Feb. 11–13.
38.
Falehi
,
A. D.
,
2019
, “
Optimal Power Tracking of DFIG-Based Wind Turbine Using MOGWO-Based Fractional-Order Sliding Mode Controller
,”
Sol. Energy Eng.
,
142
(
3
), p.
031004
.10.1115/1.4044977
39.
Slotine
,
J. J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Liu
,
J.
,
2017
,
Sliding Mode Control Using MATLAB
,
Academic Press
, San Diego, CA.
41.
Yadav
,
A. K.
,
Pathak
,
P. K.
,
Sah
,
S. V.
, and
Gaur
,
P.
,
2019
, “
Sliding Mode Based Fuzzy Model Reference Adaptive Control Technique for an Unstable System
,”
J. Inst. Eng. Ser. B
,
100
(
2
), pp.
169
177
.10.1007/s40031-019-00372-5
42.
Li
,
Y.
, and
Xu
,
Q.
,
2010
, “
Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
798
810
.10.1109/TCST.2009.2028878
43.
Ardjoun
,
S.
,
Denai
,
M.
, and
Chafouk
,
H.
,
2022
, “
A Robust Control Approach for Frequency Support Capability of Grid-Tie Photovoltaic Systems
,”
Sol. Energy Eng.
, 145(2), p.
021009
.
44.
Yadav
,
A. K.
, and
Gaur
,
P.
,
2016
, “
Improved Self-Tuning Fuzzy Proportional–Integral Derivative Versus Fuzzy-Adaptive Proportional–Integral–Derivative for Speed Control of Nonlinear Hybrid Electric Vehicles
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
6
), p.
061013
.10.1115/1.4033685
45.
Khooban
,
M. H.
,
2018
, “
Secondary Load Frequency Control of Time-Delay Stand-Alone Microgrids With Electric Vehicles
,”
IEEE Trans. Ind. Electron.
,
65
(
9
), pp.
7416
7422
.10.1109/TIE.2017.2784385
46.
Khamies
,
M.
,
Magdy
,
G.
,
Hussein
,
M. E.
,
Banakhr
,
F. A.
, and
Kamel
,
S.
,
2020
, “
An Efficient Control Strategy for Enhancing Frequency Stability of Multi-Area Power System Considering High Wind Energy Penetration
,”
IEEE Access
,
8
, pp.
140062
140078
.10.1109/ACCESS.2020.3012119
47.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2022
, “
A State-of-the-Art Review on Shading Mitigation Techniques in Solar Photovoltaics Via Meta-Heuristic Approach
,”
Neural Comput. Appl.
,
34
(
1
), pp.
171
209
.10.1007/s00521-021-06586-3
48.
Abdollahzadeh
,
B.
,
Soleimanian
,
F.
, and
Mirjalili
,
S.
,
2021
, “
Artificial Gorilla Troops Optimizer: A New Nature‐Inspired Metaheuristic Algorithm for Global Optimization Problems
,”
Int. J. Intell. Syst.
,
36
(
10
), pp.
5887
5958
.10.1002/int.22535
You do not currently have access to this content.