Abstract

In this article, we take a time–space fractional convection-diffusion problem with a nonlinear reaction term on a finite domain. We use the L1 operator to discretize the Caputo fractional derivative and the weighted shifted Grünwald difference (WSGD) method to approximate the Riesz fractional derivative. Furthermore, we apply the Crank Nicolson difference scheme with weighted shifted Grünwald–Letnikov and obtain that the numerical method is unconditionally stable and convergent with the accuracy of O(τ2α+h2), where α(0,1]. For finding the numerical solution of the nonlinear system of equation, we apply the fixed iteration method. In the end, numerical simulations are treated to verify the effectiveness and consistency of the proposed method.

References

1.
Liu
,
F.
,
Yang
,
C.
, and
Burrage
,
K.
,
2009
, “
Numerical Method and Analytical Technique of the Modifed Anomalous Subdiffusion Equation With a Nonlinear Source Term
,”
J. Comput. Appl. Math.
,
231
(
1
), pp.
160
176
.10.1016/j.cam.2009.02.013
2.
Karniadakis
,
G. E.
,
Hesthaven
,
J. S.
, and
Podlubny
,
I.
,
2015
, “
Special Issue on Fractional PDEs: Theory, Numerics, and Applications
,”
J. Comput. Phys.
,
293
(
6
), pp.
1
3
.10.1016/j.jcp.2015.04.007
3.
Basha
,
M.
,
Dai
,
B.
, and
Al-Sadi
,
W.
,
2021
, “
Existence and Stability for a Nonlinear Coupled p-Laplacian System of Fractional Differential Equations
,”
J. Math.
,
2021
, pp.
1
15
.10.1155/2021/6687949
4.
Liu
,
C.
,
Zheng
,
L.
,
Pan
,
M.
,
Lin
,
P.
, and
Liu
,
F.
,
2019
, “
Effects of Fractional Mass Transfer and Chemical Reaction on MHD Flow in a Heterogeneous Porous Medium
,”
Comput. Math. Appl.
,
78
(
8
), pp.
2618
2631
.10.1016/j.camwa.2019.04.011
5.
Magin
,
R. L.
,
2010
, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1586
1593
.10.1016/j.camwa.2009.08.039
6.
Bedi
,
K.
,
Pandit
,
S.
,
Jiwari
,
R.
, and
Koksal
,
M. E.
,
2017
, “
Haar Wavelets Operational Matrix Based Algorithm for Computational Modelling of Hyperbolic Type Wave Equations
,”
Eng. Comput.
,
34
(
8
), pp.
2793
2814
.10.1108/EC-10-2016-0364
7.
Fomin
,
S.
,
Chugunov
,
V.
, and
Hashida
,
T.
,
2010
, “
Application of Fractional Differential Equations for Modeling the Anomalous Diffusion of Contaminant From Fracture Into Porous Rock Matrix With Bordering Alteration Zone
,”
Transp. Porous Media
,
81
(
2
), pp.
187
205
.10.1007/s11242-009-9393-2
8.
Tuan
,
N. H.
,
Ganji
,
R. M.
, and
Jafari
,
H.
,
2020
, “
A Numerical Study of Fractional Rheological Models and Fractional Newell-Whitehead-Segel Equation With Non-Local and Non-Singular Kernel
,”
Chin. J. Phys.
,
68
, pp.
308
320
.10.1016/j.cjph.2020.08.019
9.
Jafari
,
H.
,
Ganji
,
R. M.
,
Nkomo
,
N. S.
, and
Lv
,
Y. P.
,
2021
, “
A Numerical Study of Fractional Order Population Dynamics Model
,”
Results Phys.
,
27
, p.
104456
.10.1016/j.rinp.2021.104456
10.
Ganji
,
R. M.
,
Jafari
,
H.
,
Moshokoa
,
S. P.
, and
Nkomo
,
N. S.
,
2021
, “
A Mathematical Model and Numerical Solution for Brain Tumor Derived Using Fractional Operator
,”
Results Phys.
,
28
, p.
104671
.10.1016/j.rinp.2021.104671
11.
Ganji
,
R. M.
, and
Jafari
,
H.
,
2020
, “
A New Approach for Solving Nonlinear Volterra Integro-Differential Equations With Mittag-Leffler Kernel
,”
Proc. Inst. Math. Mech.
,
46
(
1
), pp.
144
158
.
12.
Nikan
,
O.
,
Jafari
,
H.
, and
Golbabai
,
A.
,
2020
, “
Numerical Analysis of the Fractional Evolution Model for Heat Flow in Materials With Memory
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2627
2637
.10.1016/j.aej.2020.04.026
13.
Ganji
,
R. M.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2020
, “
A New Approach for Solving Multi Variable Orders Differential Equations With Mittag–Leffler Kernel
,”
Chaos, Solitons Fractals
,
130
, p.
109405
.10.1016/j.chaos.2019.109405
14.
Moallem
,
G. R.
,
Jafari
,
H.
, and
Adem
,
A. R.
,
2019
, “
A Numerical Scheme to Solve Variable Order Diffusion-Wave Equations
,”
Therm. Sci.
,
23
(
Suppl. 6
), pp.
2063
2071
.10.2298/TSCI190729371M
15.
Chang
,
A.
,
Sun
,
H.
,
Zheng
,
C.
,
Lu
,
B.
,
Lu
,
C.
,
Ma
,
R.
, and
Zhang
,
Y.
,
2018
, “
A Time Fractional Convection–Diffusion Equation to Model Gas Transport Through Heterogeneous Soil and Gas Reservoirs
,”
Phys. A Stat. Mech. Appl.
,
502
, pp.
356
369
.10.1016/j.physa.2018.02.080
16.
Li
,
L.
,
Jiang
,
Z.
, and
Yin
,
Z.
,
2020
, “
Compact Finite Difference Method for 2D Time-Fractional Convection–Diffusion Equation of Groundwater Pollution Problems
,”
Comput. Appl. Math.
,
39
(
3
), pp.
1
34
.10.1007/s40314-020-01169-9
17.
Momani
,
S.
, and
Odibat
,
Z.
,
2008
, “
Numerical Solutions of the Space-Time Fractional Advection-Dispersion Equation
,”
Numer. Methods Partial Diff. Eqs.
,
24
(
6
), pp.
1416
1429
.10.1002/num.20324
18.
Shen
,
S.
,
Liu
,
F.
, and
Anh
,
V.
,
2008
, “
Fundamental Solution and Discrete Random Walk Model for a Time-Space Fractional Diffusion Equation of Distributed Order
,”
J. Appl. Math. Comput.
,
28
(
1–2
), pp.
147
164
.10.1007/s12190-008-0084-x
19.
Zhang
,
Z.
,
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
A Linearized Crank–Nicolson Galerkin FEMs for the Nonlinear Fractional Ginzburg–Landau Equation
,”
Appl. Anal.
,
98
(
15
), pp.
2648
2667
.10.1080/00036811.2018.1469008
20.
Zeng
,
F.
, and
Li
,
C.
,
2017
, “
A New Crank–Nicolson Finite Element Method for the Time-Fractional Subdiffusion Equation
,”
Appl. Numer. Math.
,
121
(
6
), pp.
82
95
.10.1016/j.apnum.2017.06.011
21.
Gracia
,
J. L.
,
O’Riordan
,
E.
, and
Stynes
,
M.
,
2018
, “
Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem
,”
Comput. Methods Appl. Math.
,
18
(
1
), pp.
33
42
.10.1515/cmam-2017-0019
22.
Lin
,
Y.
, and
Xu
,
C.
,
2007
, “
Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation
,”
J. Comput. Phys.
,
225
(
2
), pp.
1533
1552
.10.1016/j.jcp.2007.02.001
23.
Wang
,
Y. M.
, and
Wang
,
T.
,
2018
, “
A Compact ADI Method and Its Extrapolation for Time Fractional Sub-Diffusion Equations With Nonhomogeneous Neumann Boundary Conditions
,”
Comput. Math. Appl.
,
75
(
3
), pp.
721
739
.10.1016/j.camwa.2017.10.002
24.
Feng
,
L.
,
Zhuang
,
P.
,
Liu
,
F.
,
Turner
,
I.
, and
Li
,
J.
,
2016
, “
High-Order Numerical Methods for the Riesz Space Fractional Advection-Dispersion Equations
,”
arXiv preprint arXiv:2003.13923[math.NA]
.10.48550/arXiv.2003.13923
25.
Anley
,
E. F.
, and
Zheng
,
Z.
,
2020
, “
Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation With Variable Coefficients
,”
Symmetry
,
12
(
3
), p.
485
.10.3390/sym12030485
26.
Anley
,
E. F.
, and
Zheng
,
Z.
,
2020
, “
Finite Difference Method for Two-Sided Two Dimensional Space Fractional Convection-Diffusion Problem With Source Term
,”
Mathematics
,
8
(
11
), p.
1878
.10.3390/math8111878
27.
Abbaszadeh
,
M.
, and
Dehghan
,
M.
,
2021
, “
A Finite Difference Procedure to Solve Weakly Singular Integro Partial Differential Equation With Space-Time Fractional Derivatives
,”
Eng. Comput.
,
37
(
3
), pp.
2173
2182
.10.1007/s00366-020-00936-w
28.
Chen
,
M.
,
Deng
,
W.
, and
Wu
,
Y.
,
2013
, “
Superlinearly Convergent Algorithms for the Two-Dimensional Space–Time Caputo–Riesz Fractional Diffusion Equation
,”
Appl. Numer. Math.
,
70
, pp.
22
41
.10.1016/j.apnum.2013.03.006
29.
Zhang
,
F.
,
Gao
,
X.
, and
Xie
,
Z.
,
2019
, “
Difference Numerical Solutions for Time-Space Fractional Advection Diffusion Equation
,”
Bound. Value Probl.
,
2019
(
1
), pp.
1
11
.10.1186/s13661-019-1120-5
30.
Shen
,
S.
,
Liu
,
F.
, and
Anh
,
V.
,
2011
, “
Numerical Approximations and Solution Techniques for the Space-Time Riesz–Caputo Fractional Advection-Diffusion Equation
,”
Numer. Algorithms
,
56
(
3
), pp.
383
403
.10.1007/s11075-010-9393-x
31.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
,
2007
, “
Stability and Convergence of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
,
191
(
1
), pp.
12
20
.10.1016/j.amc.2006.08.162
32.
Fu
,
H.
, and
Wang
,
H.
,
2019
, “
A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation
,”
J. Sci. Comput.
,
78
(
3
), pp.
1724
1743
.10.1007/s10915-018-0835-2
33.
Gu
,
X. M.
,
Huang
,
T. Z.
,
Ji
,
C. C.
,
Carpentieri
,
B.
, and
Alikhanov
,
A. A.
,
2017
, “
Fast Iterative Method With a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation
,”
J. Sci. Comput.
,
72
(
3
), pp.
957
985
.10.1007/s10915-017-0388-9
34.
Avazzadeh
,
Z.
,
Hassani
,
H.
, and
Machado
,
J. A. T.
,
2020
, “
Numerical Approach for Solving Variable-Order Space-Time Fractional Telegraph Equation Using Transcendental Bernstein Series
,”
Eng. Comput.
,
36
(
3
), pp.
867
878
.10.1007/s00366-019-00736-x
35.
Wang
,
J.
,
Liu
,
T.
,
Li
,
H.
,
Liu
,
Y.
, and
He
,
S.
,
2017
, “
Second-Order Approximation Scheme Combined With H1-Galerkin MFE Method for Nonlinear Time Fractional Convection–Diffusion Equation
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1182
1196
.10.1016/j.camwa.2016.07.037
36.
Kumar
,
D.
,
Chaudhary
,
S.
, and
Kumar
,
V. S.
,
2019
, “
Galerkin Finite Element Schemes With Fractional Crank–Nicolson Method for the Coupled Time-Fractional Nonlinear Diffusion System
,”
Comput. Appl. Math.
,
38
(
3
), pp.
1
29
.10.1007/s40314-019-0889-2
37.
Zeng
,
F.
,
Liu
,
F.
,
Li
,
C.
,
Burrage
,
K.
,
Turner
,
I.
, and
Anh
,
V.
,
2014
, “
A Crank–Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation
,”
SIAM J. Numer. Anal.
,
52
(
6
), pp.
2599
2622
.10.1137/130934192
38.
Costa
,
F. S.
, and
Pereira
,
M. R.
,
2018
, “
Fractional Space–Time Nonlinear Reaction–Convection–Diffusion
,”
Comput. Appl. Math.
,
37
(
4
), pp.
4357
4375
.10.1007/s40314-018-0573-y
39.
Heydari
,
M. H.
,
Avazzadeh
,
Z.
, and
Yang
,
Y.
,
2020
, “
Numerical Treatment of the Space–Time Fractal–Fractional Model of Nonlinear Advection– Diffusion–Reaction Equation Through the Bernstein Polynomials
,”
Fractals
,
28
(
08
), p.
2040001
.10.1142/S0218348X20400010
40.
Singh
,
A.
,
Das
,
S.
,
Ong
,
S. H.
, and
Jafari
,
H.
,
2019
, “
Numerical Solution of Nonlinear Reaction–Advection–Diffusion Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), 041003.10.1115/1.4042687
41.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
42.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
New York
.
43.
Meerschaert
,
M. M.
, and
Tadjeran
,
C.
,
2004
, “
Finite Difference Approximations for Fractional Advection–Dispersion Flow Equations
,”
J. Comput. Appl. Math.
,
172
(
1
), pp.
65
77
.10.1016/j.cam.2004.01.033
44.
Al-Shibani
,
F.
, and
Ismail
,
A.
,
2015
, “
Compact Crank–Nicolson and Du Fort–Frankel Method for the Solution of the Time Fractional Diffusion Equation
,”
Int. J. Comput. Methods
,
12
(
06
), p.
1550041
.10.1142/S0219876215500413
45.
Tian
,
W.
,
Zhou
,
H.
, and
Deng
,
W.
,
2015
, “
A Class of Second Order Difference Approximations for Solving Space Fractional Diffusion Equations
,”
Math. Comput.
,
84
(
294
), pp.
1703
1727
.10.1090/S0025-5718-2015-02917-2
46.
Chen
,
S.
,
Liu
,
F.
,
Zhuang
,
P.
, and
Anh
,
V.
,
2009
, “
A Finite Difference Approximations for the Fractional Fokker–Planck Equation
,”
Appl. Math. Modell.
,
33
(
1
), pp.
256
273
.10.1016/j.apm.2007.11.005
47.
Wang
,
Y. M.
,
2015
, “
A Compact Finite Difference Method for a Class of Time Fractional Convection-Diffusion-Wave Equations With Variable Coefficients
,”
Numer. Algorithms
,
70
(
3
), pp.
625
651
.10.1007/s11075-015-9965-x
48.
Yu
,
D.
, and
Tan
,
H.
,
2003
,
Numerical Methods of Differential Equations
,
Science Publisher
,
Beijing, China
.
49.
Zhuang
,
P.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
,
2009
, “
Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation With a Nonlinear Source Term
,”
SIAM J. Numer. Anal.
,
47
(
3
), pp.
1760
1781
.10.1137/080730597
You do not currently have access to this content.