Abstract

A second-order numerical scheme is proposed to solve the generalized time-fractional Burgers' equation. The time-fractional derivative is considered in the Caputo sense. First, the quasi-linearization process is used to linearize the time-fractional Burgers' equation, which gives a sequence of linear partial differential equations (PDEs). The Crank–Nicolson scheme is used to discretize the sequence of PDEs in the temporal direction, followed by the central difference formulae for both the first and second-order spatial derivatives. The established error bounds (in the L2 norm) obtained through the meticulous theoretical analysis show that the method is second-order convergent in space and time. The technique is also shown to be conditionally stable. Some numerical experiments are presented to confirm the theoretical results.

References

1.
Bateman
,
H.
,
1915
, “
Some Recent Researches on the Motion of Fluids
,”
Mon. Weather Rev.
,
43
(
4
), pp.
163
170
.10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
2.
Burgers
,
J. M.
,
1948
, “
A Mathematical Model Illustrating the Theory of Turbulence
,”
Adv. Appl. Mech.
,
1
, pp.
171
199
.10.1016/S0065-2156(08)70100-5
3.
Cole
,
J. D.
,
1951
, “
On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics
,”
Q. Appl. Math.
,
9
(
3
), pp.
225
236
.10.1090/qam/42889
4.
Hopf
,
E.
,
1950
, “
The Partial Differential Equation ut+uux=μuxx
,”
Commun. Pure Appl. Math.
,
3
(
3
), pp.
201
230
.10.1002/cpa.3160030302
5.
Benton
,
E. R.
, and
Platzman
,
G. W.
,
1972
, “
A Table of Solutions of the One-Dimensional Burgers Equation
,”
Q. Appl. Math.
,
30
(
2
), pp.
195
212
.10.1090/qam/306736
6.
Ozis
,
T.
, and
Ozdes
,
A.
,
1996
, “
A Direct Variational Methods Applied to Burgers' Equation
,”
J. Comput. Appl. Math.
,
71
(
2
), pp.
163
175
.10.1016/0377-0427(95)00221-9
7.
Hussain
,
M.
,
2021
, “
Hybrid Radial Basis Function Methods of Lines for the Numerical Solution of Viscous Burgers' Equation
,”
Comput. Appl. Math.
,
40
(
4
), pp.
1
49
.10.1007/s40314-021-01505-7
8.
Mittal
,
R.
, and
Singhal
,
P.
,
1993
, “
Numerical Solution of Burger's Equation
,”
Commun. Numer. Methods Eng.
,
9
(
5
), pp.
397
406
.10.1002/cnm.1640090505
9.
Kadalbajoo
,
M. K.
,
Sharma
,
K. K.
, and
Awasthi
,
A.
,
2005
, “
A Parameter-Uniform Implicit Difference Scheme for Solving Time-Dependent Burgers' Equations
,”
Appl. Math. Comput.
,
170
(
2
), pp.
1365
1393
.10.1016/j.amc.2005.01.032
10.
Kadalbajoo
,
M. K.
, and
Awasthi
,
A.
,
2006
, “
A Numerical Method Based on Crank-Nicolson Scheme for Burgers' Equation
,”
Appl. Math. Comput.
,
182
(
2
), pp.
1430
1442
.10.1016/j.amc.2006.05.030
11.
Gülsu
,
M.
,
2006
, “
A Finite Difference Approach for Solution of Burgers' Equation
,”
Appl. Math. Comput.
,
175
(
2
), pp.
1245
1255
.10.1016/j.amc.2005.08.042
12.
Pandey
,
K.
,
Verma
,
L.
, and
Verma
,
A. K.
,
2009
, “
On a Finite Difference Scheme for Burgers' Equation
,”
Appl. Math. Comput.
,
215
(
6
), pp.
2206
2214
.10.1016/j.amc.2009.08.018
13.
Liao
,
W.
,
2008
, “
An Implicit Fourth-Order Compact Finite Difference Scheme for One-Dimensional Burgers' Equation
,”
Appl. Math. Comput.
,
206
(
2
), pp.
755
764
.10.1016/j.amc.2008.09.037
14.
Chen
,
Y.
, and
Zhang
,
T.
,
2019
, “
A Weak Galerkin Finite Element Method for Burgers' Equation
,”
J. Comput. Appl. Math.
,
348
, pp.
103
119
.10.1016/j.cam.2018.08.044
15.
Kundu
,
S.
, and
Pani
,
A. K.
,
2018
, “
Finite Element Approximation to Global Stabilization of the Burgers' Equation by Neumann Boundary Feedback Control Law
,”
Adv. Comput. Math.
,
44
(
2
), pp.
541
570
.10.1007/s10444-017-9553-9
16.
Yaseen
,
M.
, and
Abbas
,
M.
,
2020
, “
An Efficient Computational Technique Based on Cubic Trigonometric B-Splines for Time Fractional Burgers' Equation
,”
Int. J. Comput. Math.
,
97
(
3
), pp.
725
738
.10.1080/00207160.2019.1612053
17.
Mittal
,
R.
, and
Jain
,
R.
,
2012
, “
Numerical Solutions of Nonlinear Burgers' Equation With Modified Cubic B-Splines Collocation Method
,”
Appl. Math. Comput.
,
218
(
15
), pp.
7839
7855
.10.1016/j.amc.2012.01.059
18.
Jiwari
,
R.
,
2012
, “
A Haar Wavelet Quasilinearization Approach for Numerical Simulation of Burgers' Equation
,”
Comput. Phys. Commun.
,
183
(
11
), pp.
2413
2423
.10.1016/j.cpc.2012.06.009
19.
Wang
,
G.
, and
Wazwaz
,
A.-M.
,
2022
, “
On the Modified Gardner Type Equation and Its Time Fractional Form
,”
Chaos, Solitons Fractals
,
155
, p.
111694
.10.1016/j.chaos.2021.111694
20.
Wang
,
G.
,
Yang
,
K.
,
Gu
,
H.
,
Guan
,
F.
, and
Kara
,
A.
,
2020
, “
A (2 + 1)-Dimensional Sine-Gordon and Sinh-Gordon Equations With Symmetries and Kink Wave Solutions
,”
Nucl. Phys. B
,
953
, p.
114956
.10.1016/j.nuclphysb.2020.114956
21.
Wang
,
G.
,
2021
, “
A New (3 + 1)-Dimensional Schrödinger Equation: Derivation, Soliton Solutions and Conservation Laws
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1595
1602
.10.1007/s11071-021-06359-6
22.
Wang
,
G.
,
2021
, “
A Novel (3 + 1)-Dimensional Sine-Gorden and a Sinh-Gorden Equation: Derivation, Symmetries and Conservation Laws
,”
Appl. Math. Lett.
,
113
, p.
106768
.10.1016/j.aml.2020.106768
23.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
24.
Sugimoto
,
N.
,
1991
, “
Burgers Equation With a Fractional Derivative; Hereditary Effects on Nonlinear Acoustic Waves
,”
J. Fluid Mech.
,
225
, pp.
631
653
.10.1017/S0022112091002203
25.
Inc
,
M.
,
2008
, “
The Approximate and Exact Solutions of the Space-and Time-Fractional Burgers Equations With Initial Conditions by Variational Iteration Method
,”
J. Math. Anal. Appl.
,
345
(
1
), pp.
476
484
.10.1016/j.jmaa.2008.04.007
26.
Atangana
,
A.
,
2017
, “
Fractal-Fractional Differentiation and Integration: Connecting Fractal Calculus and Fractional Calculus to Predict Complex System
,”
Chaos, Solitons Fractals
,
102
, pp.
396
406
.10.1016/j.chaos.2017.04.027
27.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
, Vol.
204
,
Elsevier
Science, Publishers BV, Amsterdam, The Netherlands.
28.
Agrawal
,
O. P.
,
2002
, “
Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
145
155
.10.1023/A:1016539022492
29.
Sun
,
H.
,
Chen
,
W.
,
Li
,
C.
, and
Chen
,
Y.
,
2012
, “
Finite Difference Schemes for Variable-Order Time Fractional Diffusion Equation
,”
Int. J. Bifurcation Chaos
,
22
(
4
), p.
1250085
.10.1142/S021812741250085X
30.
Murillo
,
J. Q.
, and
Yuste
,
S. B.
,
2011
, “
An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021014
.10.1115/1.4002687
31.
Esen
,
A.
, and
Tasbozan
,
O.
,
2016
, “
Numerical Solution of Time Fractional Burgers Equation by Cubic b-Spline Finite Elements
,”
Mediterr. J. Math.
,
13
(
3
), pp.
1325
1337
.10.1007/s00009-015-0555-x
32.
Hashim
,
I.
,
Abdulaziz
,
O.
, and
Momani
,
S.
,
2009
, “
Homotopy Analysis Method for Fractional IVPs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
3
), pp.
674
684
.10.1016/j.cnsns.2007.09.014
33.
Duan
,
J.-S.
,
Rach
,
R.
,
Baleanu
,
D.
, and
Wazwaz
,
A.-M.
,
2012
, “
A Review of the Adomian Decomposition Method and Its Applications to Fractional Differential Equations
,”
Commun. Fractional Calculus
,
3
(
2
), pp.
73
99
.https://api.semanticscholar.org/CorpusID:18461277
34.
Momani
,
S.
,
2006
, “
Non-Perturbative Analytical Solutions of the Space-and Time-Fractional Burgers Equations
,”
Chaos, Solitons Fractals
,
28
(
4
), pp.
930
937
.10.1016/j.chaos.2005.09.002
35.
Li
,
D.
,
Zhang
,
C.
, and
Ran
,
M.
,
2016
, “
A Linear Finite Difference Scheme for Generalized Time Fractional Burgers Equation
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
6069
6081
.10.1016/j.apm.2016.01.043
36.
El-Danaf
,
T. S.
, and
Hadhoud
,
A. R.
,
2012
, “
Parametric Spline Functions for the Solution of the One Time Fractional Burgers' Equation
,”
Appl. Math. Modell.
,
36
(
10
), pp.
4557
4564
.10.1016/j.apm.2011.11.035
37.
Esen
,
A.
,
Bulut
,
F.
, and
Oruç
,
Ö.
,
2016
, “
A Unified Approach for the Numerical Solution of Time Fractional Burgers' Type Equations
,”
Eur. Phys. J. Plus
,
131
(
4
), p.
116
.10.1140/epjp/i2016-16116-5
38.
Akram
,
T.
,
Abbas
,
M.
,
Riaz
,
M. B.
,
Ismail
,
A. I.
, and
Ali
,
N. M.
,
2020
, “
An Efficient Numerical Technique for Solving Time Fractional Burgers Equation
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2201
2220
.10.1016/j.aej.2020.01.048
39.
Oruç
,
Ö.
,
Esen
,
A.
, and
Bulut
,
F.
,
2019
, “
A Unified Finite Difference Chebyshev Wavelet Method for Numerically Solving Time Fractional Burgers' Equation
,”
Discrete Contin. Dyn. Syst.-Ser. S
,
12
(
3
), pp. 533–542.10.3934/dcdss.2019035
40.
Qiu
,
W.
,
Chen
,
H.
, and
Zheng
,
X.
,
2019
, “
An Implicit Difference Scheme and Algorithm Implementation for the One-Dimensional Time-Fractional Burgers Equations
,”
Math. Comput. Simul.
,
166
, pp.
298
314
.10.1016/j.matcom.2019.05.017
41.
Hashmi
,
M. S.
,
Wajiha
,
M.
,
Yao
,
S.-W.
,
Ghaffar
,
A.
, and
Inc
,
M.
,
2021
, “
Cubic Spline Based Differential Quadrature Method: A Numerical Approach for Fractional Burger Equation
,”
Results Phys.
,
26
, p.
104415
.10.1016/j.rinp.2021.104415
42.
Cen
,
D.
,
Wang
,
Z.
, and
Mo
,
Y.
,
2021
, “
Second Order Difference Schemes for Time-Fractional Kdv–Burgers' Equation With Initial Singularity
,”
Appl. Math. Lett.
,
112
, p.
106829
.10.1016/j.aml.2020.106829
43.
Zhao
,
X.
,
Sun
,
Z-Z.
, and
Karniadakis
,
G. E.
,
2015
, “
Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications
,”
J. Comput. Phys.
,
293
, pp.
184
200
.10.1016/j.jcp.2014.08.015
44.
Ji
,
B.
,
Liao
,
H-L.
,
Gong
,
Y.
, and
Zhang
,
L.
,
2020
, “
Adaptive Second-Order Crank–Nicolson Time-Stepping Schemes for Time-Fractional Molecular Beam Epitaxial Growth Models
,”
SIAM J. Sci. Comput.
,
42
(
3
), pp.
B738
B760
.10.1137/19M1259675
45.
Liao
,
H-L.
,
Tang
,
T.
, and
Zhou
,
T.
,
2020
, “
A Second-Order and Nonuniform Time-Stepping Maximum-Principle Preserving Scheme for Time-Fractional Allen-Cahn Equations
,”
J. Comput. Phys.
,
414
, p.
109473
.10.1016/j.jcp.2020.109473
46.
Ji
,
B.
,
Zhu
,
X.
, and
Liao
,
H-L.
,
2022
, “
Energy Stability of Variable-Step l1-Type Schemes for Time-Fractional Cahn-Hilliard Model
,” preprint
arXiv:2201.00920
.10.48550/arXiv.2201.00920
47.
Liao
,
H-L.
,
Liu
,
N.
, and
Lyu
,
P.
,
2023
, “
Discrete Gradient Structure of a Second-Order Variable-Step Method for Nonlinear Integro-Differential Models
,”
SIAM J. Numer. Anal.
, 61(5).10.1137/22M1520050
48.
Asgari
,
Z.
, and
Hosseini
,
S. M.
,
2018
, “
Efficient Numerical Schemes for the Solution of Generalized Time Fractional Burgers Type Equations
,”
Numer. Algorithms
,
77
(
3
), pp.
763
792
.10.1007/s11075-017-0339-4
49.
Bellman
,
R. E.
,
1965
,
Quasilinearization and Nonlinear Boundary-Value Problems
, Vol.
3
,
American Elsevier Publishing Company
,
New york
.
50.
Gowrisankar
,
S.
, and
Natesan
,
S.
,
2019
, “
An Efficient Robust Numerical Method for Singularly Perturbed Burgers' Equation
,”
Appl. Math. Comput.
,
346
, pp.
385
394
.10.1016/j.amc.2018.10.049
51.
Rubin
,
S. G.
, and
Graves
,
R. A.
, Jr.
,
1975
, “
Viscous Flow Solutions With a Cubic Spline Approximation
,”
Comput. Fluids
,
3
(
1
), pp.
1
36
.10.1016/0045-7930(75)90006-7
52.
Liu
,
Z.
, and
Li
,
X.
,
2018
, “
A Crank–Nicolson Difference Scheme for the Time Variable Fractional Mobile–Immobile Advection–Dispersion Equation
,”
J. Appl. Math. Comput.
,
56
(
1–2
), pp.
391
410
.10.1007/s12190-016-1079-7
You do not currently have access to this content.