Abstract

In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations (TFDEs) involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the nonuniform mesh. The truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as min{4α,rα} and (4α)/α, respectively, where α(0,1) is the order of fractional derivative and r1 is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on the graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general r. Then, we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for r = 1, is analyzed for nonsmooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.

References

1.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier Science Limited
, Amsterdam, The Netherlands.
2.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations
, Vol.
198
,
Academic Press
, San Diego, CA.
3.
Hilfer
,
R.
,
2000
, “
Fractional Calculus and Regular Variation in Thermodynamics
,”
Applications of Fractional Calculus in Physics
,
World Scientific
, Singapore, pp.
429
463
.
4.
Mainardi
,
F.
, and
Paradisi
,
P.
,
1997
, “
A Model of Diffusive Waves in Viscoelasticity Based on Fractional Calculus
,”
Proceedings of the 36th IEEE Conference on Decision and Control
, San Diego, CA, Dec. 12, pp.
4961
4966
.10.1109/CDC.1997.649833
5.
Iomin
,
A.
,
Dorfman
,
S.
, and
Dorfman
,
L.
,
2004
, “
On Tumor Development: Fractional Transport Approach
,” preprint
arXiv:q-bio/0406001
.10.48550/arXiv.q-bio/0406001
6.
Singh
,
A. K.
,
Mehra
,
M.
, and
Gulyani
,
S.
,
2023
, “
A Modified Variable-Order Fractional Sir Model to Predict the Spread of Covid-19 in India
,”
Math. Methods Appl. Sci.
,
46
(
7
), pp.
8208
8222
.10.1002/mma.7655
7.
Mehandiratta
,
V.
,
Mehra
,
M.
, and
Leugering
,
G.
,
2021
, “
Optimal Control Problems Driven by Time-Fractional Diffusion Equations on Metric Graphs: Optimality System and Finite Difference Approximation
,”
SIAM J. Control Optim.
,
59
(
6
), pp.
4216
4242
.10.1137/20M1340332
8.
Mehandiratta
,
V.
,
Mehra
,
M.
, and
Leugering
,
G.
,
2021
, “
Fractional Optimal Control Problems on a Star Graph: Optimality System and Numerical Solution
,”
Math. Control Relat. Fields
,
11
(
1
), pp.
189
209
.10.3934/mcrf.2020033
9.
Kumar
,
N.
, and
Mehra
,
M.
,
2021
, “
Legendre Wavelet Collocation Method for Fractional Optimal Control Problems With Fractional Bolza Cost
,”
Numer. Methods Partial Differ. Equations
,
37
(
2
), pp.
1693
1724
.10.1002/num.22604
10.
Singh
,
A. K.
, and
Mehra
,
M.
,
2021
, “
Wavelet Collocation Method Based on Legendre Polynomials and Its Application in Solving the Stochastic Fractional Integro-Differential Equations
,”
J. Comput. Sci.
,
51
, p.
101342
.10.1016/j.jocs.2021.101342
11.
Mehandiratta
,
V.
, and
Mehra
,
M.
,
2020
, “
A Difference Scheme for the Time-Fractional Diffusion Equation on a Metric Star Graph
,”
Appl. Numer. Math.
,
158
, pp.
152
163
.10.1016/j.apnum.2020.07.022
12.
Patel
,
K. S.
, and
Mehra
,
M.
,
2020
, “
Fourth Order Compact Scheme for Space Fractional Advection–Diffusion Reaction Equations With Variable Coefficients
,”
J. Comput. Appl. Math.
,
380
, p.
112963
.10.1016/j.cam.2020.112963
13.
Singh
,
A. K.
, and
Mehra
,
M.
,
2020
, “
Uncertainty Quantification in Fractional Stochastic Integro-Differential Equations Using Legendre Wavelet Collocation Method
,”
International Conference on Computational Science
(
ICCS
), Amsterdam, The Netherlands, June 3–5,
pp.
58
71
.10.1007/978-3-030-50417-5_5
14.
Kumar
,
N.
, and
Mehra
,
M.
,
2021
, “
Collocation Method for Solving Nonlinear Fractional Optimal Control Problems by Using Hermite Scaling Function With Error Estimates
,”
Optim. Control Appl. Methods
,
42
(
2
), pp.
417
444
.10.1002/oca.2681
15.
Singh
,
A. K.
,
Mehra
,
M.
, and
Gulyani
,
S.
,
2023
, “
Learning Parameters of a System of Variable Order Fractional Differential Equations
,”
Numer. Methods Partial Differ. Equations
,
39
(
3
), pp.
1962
1976
.10.1002/num.22796
16.
Shukla
,
A.
,
Mehra
,
M.
, and
Leugering
,
G.
,
2020
, “
A Fast Adaptive Spectral Graph Wavelet Method for the Viscous Burgers' Equation on a Star-Shaped Connected Graph
,”
Math. Methods Appl. Sci.
,
43
(
13
), pp.
7595
7614
.10.1002/mma.5907
17.
Luchko
,
Y.
,
2012
, “
Anomalous Diffusion: Models, Their Analysis, and Interpretation
,”
Advances in Applied Analysis
,
Springer
, Berlin, Germany, pp.
115
145
.
18.
Mourad
,
K.
,
Fateh
,
E.
, and
Baleanu
,
D.
,
2018
, “
Stochastic Fractional Perturbed Control Systems With Fractional Brownian Motion and Sobolev Stochastic Non Local Conditions
,”
Collect. Math.
,
69
(
2
), pp.
283
296
.10.1007/s13348-017-0207-5
19.
Mourad
,
K.
,
2018
, “
Approximate Controllability of Fractional Neutral Stochastic Evolution Equations in Hilbert Spaces With Fractional Brownian Motion
,”
Stochastic Anal. Appl.
,
36
(
2
), pp.
209
223
.10.1080/07362994.2017.1386570
20.
Kerboua
,
M.
,
Bouacida
,
I.
, and
Segni
,
S.
,
2023
, “
Null Controllability of ψ-Hilfer Implicit Fractional Integro-Differential Equations With ψ-Hilfer Fractional Nonlocal Conditions
,”
Evol. Equations Control Theory
, 12(6), pp.
1473
1491
.10.3934/eect.2023021
21.
Bouacida
,
I.
,
Kerboua
,
M.
, and
Segni
,
S.
,
2023
, “
Controllability Results for Sobolev Type ψ Hilfer Fractional Backward Perturbed Integro-Differential Equations in Hilbert Space
,”
Evol. Equations Control Theory
,
12
(
1
), pp.
213
229
.10.3934/eect.2022028
22.
Li
,
C.
,
Chen
,
A.
, and
Ye
,
J.
,
2011
, “
Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation
,”
J. Comput. Phys.
,
230
(
9
), pp.
3352
3368
.10.1016/j.jcp.2011.01.030
23.
Lin
,
Y.
, and
Xu
,
C.
,
2007
, “
Finite Difference/Spectral Approximations for the Time-Fractional Diffusion Equation
,”
J. Comput. Phys.
,
225
(
2
), pp.
1533
1552
.10.1016/j.jcp.2007.02.001
24.
Jin
,
B.
,
Lazarov
,
R.
, and
Zhou
,
Z.
,
2016
, “
An Analysis of the L 1 Scheme for the Subdiffusion Equation With Nonsmooth Data
,”
IMA J. Numer. Anal.
,
36
(
1
), pp.
197
221
.10.1093/imanum/dru063
25.
Gao
,
G.
,
Sun
,
Z.
, and
Zhang
,
H.
,
2014
, “
A New Fractional Numerical Differentiation Formula to Approximate the Caputo Fractional Derivative and Its Applications
,”
J. Comput. Phys.
,
259
, pp.
33
50
.10.1016/j.jcp.2013.11.017
26.
Li
,
C. P.
,
Wu
,
R. F.
, and
Ding
,
H. F.
,
2015
, “
High-Order Approximation to Caputo Derivative and Caputo-Type Advection-Diffusion Equation (1)
,”
Commun. Appl. Ind. Math.
, pp.
1
32
.https://www.researchgate.net/publication/286279229_Highorder_approximation_to_Caputo_derivatives_and_Caputo-type_advectiondiffusion_equations_a_Dedicated_to_Professor_Francesco_Mainardi_on_the_occasion_of_his_retirement
27.
Alikhanov
,
A. A.
,
2015
, “
A New Difference Scheme for the Time Fractional Diffusion Equation
,”
J. Comput. Phys.
,
280
, pp.
424
438
.10.1016/j.jcp.2014.09.031
28.
Dwivedi
,
K. D.
,
Rajeev, Das
,
S.
, and
Baleanu
,
D.
,
2020
, “
Numerical Solution of Nonlinear Space–Time Fractional-Order Advection–Reaction–Diffusion Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
6
), p.
061005
.10.1115/1.4046879
29.
Wu
,
G. C.
,
2011
, “
A Fractional Variational Iteration Method for Solving Fractional Nonlinear Differential Equations
,”
Comput. Math. Appl.
,
61
(
8
), pp.
2186
2190
.10.1016/j.camwa.2010.09.010
30.
Stynes
,
M.
,
O'Riordan
,
E.
, and
Gracia
,
J. L.
,
2017
, “
Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation
,”
SIAM J. Numer. Anal.
,
55
(
2
), pp.
1057
1079
.10.1137/16M1082329
31.
Qiao
,
H.
, and
Cheng
,
A.
,
2022
, “
A Fast High Order Method for Time Fractional Diffusion Equation With Non-Smooth Data
,”
Discrete Contin. Dyn. Syst.-B
,
27
(
2
), pp.
903
920
.10.3934/dcdsb.2021073
32.
Cao
,
J.
,
Li
,
C.
, and
Chen
,
Y. Q.
,
2015
, “
High-Order Approximation to Caputo Derivatives and Caputo-Type Advection-Diffusion Equations (II)
,”
Fractional Calculus Appl. Anal.
,
18
(
3
), pp.
735
761
.10.1515/fca-2015-0045
33.
Li
,
C.
, and
Zeng
,
F.
,
2015
,
Numerical Methods for Fractional Calculus
,
Chapman and Hall/CRC
, Boca Raton, FL.
You do not currently have access to this content.