Abstract

Galloping is a self-excited vibration problem that structures immersed in fluid flow can experience. Due to its essential nonlinear phenomena, the structure exhibits limit cycle oscillations (LCOs), which, at high levels, can lead to failure of the systems. This work proposes an investigation of electromagnetic-enhanced nonlinear energy sinks (NES-EH) for the hybrid mitigation of aeroelastic LCOs and energy harvesting. The study focuses on a prismatic bluff body with a linear suspension immersed in the airflow, using classical steady nonlinear modeling for aerodynamic loads. The conventional NES approach is adopted, employing cubic stiffness and linear damping. Additionally, a linear electromagnetic transducer is included in the assembly for the energy harvesting process. By combining the method of multiple scales with the Harmonic Balance Method, analytical solutions are derived to characterize the system's dynamics under the influence of the device. The different response domains and their respective boundaries induced by the NES-EH are characterized based on the bifurcation diagrams. Furthermore, a slow invariant manifold (SIM) characterization is presented for each induced response domain, and its significant features are discussed. Parametric studies are carried out based on bifurcation analyses to assess the effect of NES-EH parameters on the galloping system dynamics, which allows for designing the absorber parameters. The electrical resistance is optimized to maximize the harvested power. The optimal design of NES-EH is then compared with classical energy harvesting solutions for the galloping problem. Additionally, a thorough analysis of the Target Energy Transfer phenomenon is performed.

References

1.
Paidoussis
,
M. P.
,
Price
,
S. J.
, and
de Langre
,
E.
,
2011
,
Fluid-Structure Interactions: Cross-Flow-Induced Instabilities
,
Cambridge University Press
, New York.10.1017/CBO9780511760792
2.
Abdelkefi
,
A.
,
2016
, “
Aeroelastic Energy Harvesting: A Review
,”
Int. J. Eng. Sci.
,
100
, pp.
112
135
.10.1016/j.ijengsci.2015.10.006
3.
Dimitriadis
,
G.
,
2017
,
Introduction to Nonlinear Aeroelasticity
,
Wiley
, Hoboken, NJ.10.1002/9781118756478
4.
Barrero-Gil
,
A.
,
Alonso
,
G.
, and
Sanz-Andres
,
A.
,
2010
, “
Energy Harvesting From Transverse Galloping
,”
J. Sound Vib.
,
329
(
14
), pp.
2873
2883
.10.1016/j.jsv.2010.01.028
5.
Abdelkefi
,
A.
,
Hajj
,
M. R.
, and
Nayfeh
,
A. H.
,
2012
, “
Power Harvesting From Transverse Galloping of Square Cylinder
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1355
1363
.10.1007/s11071-012-0538-4
6.
Yan
,
Z.
, and
Abdelkefi
,
A.
,
2014
, “
Nonlinear Characterization of Concurrent Energy Harvesting From Galloping and Base Excitations
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1171
1189
.10.1007/s11071-014-1369-2
7.
Li
,
H.-T.
,
Ren
,
H.
,
Cao
,
F.
, and
Qin
,
W.-Y.
,
2023
, “
Improving the Galloping Energy Harvesting Performance With Magnetic Coupling
,”
Int. J. Mech. Sci.
,
237
, p.
107785
.10.1016/j.ijmecsci.2022.107785
8.
Hu
,
G.
,
Wang
,
J.
, and
Tang
,
L.
,
2021
, “
A Comb-Like Beam Based Piezoelectric System for Galloping Energy Harvesting
,”
Mech. Syst. Signal Process.
,
150
, p.
107301
.10.1016/j.ymssp.2020.107301
9.
Xu
,
C.
, and
Zhao
,
L.
,
2022
, “
Investigation on the Characteristics of a Novel Internal Resonance Galloping Oscillator for Concurrent Aeroelastic and Base Vibratory Energy Harvesting
,”
Mech. Syst. Signal Process.
,
173
, p.
109022
.10.1016/j.ymssp.2022.109022
10.
Naseer
,
R.
,
Dai
,
H.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2019
, “
Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters With Multi-Stability Characteristics
,”
Energies
,
13
(
1
), p.
71
.10.3390/en13010071
11.
Shan
,
X.
,
Sui
,
G.
,
Tian
,
H.
,
Min
,
Z.
,
Feng
,
J.
, and
Xie
,
T.
,
2022
, “
Numerical Analysis and Experiments of an Underwater Magnetic Nonlinear Energy Harvester Based on Vortex-Induced Vibration
,”
Energy
,
241
, p.
122933
.10.1016/j.energy.2021.122933
12.
Ma
,
X.
, and
Zhou
,
S.
,
2022
, “
A Review of Flow-Induced Vibration Energy Harvesters
,”
Energy Convers. Manage.
,
254
, p.
115223
.10.1016/j.enconman.2022.115223
13.
Wang
,
J.
,
Geng
,
L.
,
Ding
,
L.
,
Zhu
,
H.
, and
Yurchenko
,
D.
,
2020
, “
The State-of-the-Art Review on Energy Harvesting From Flow-Induced Vibrations
,”
Appl. Energy
,
267
, p.
114902
.10.1016/j.apenergy.2020.114902
14.
Dai
,
H. L.
,
Abdelkefi
,
A.
,
Wang
,
L.
, and
Liu
,
W. B.
,
2014
, “
Control of Cross-Flow-Induced Vibrations of Square Cylinders Using Linear and Nonlinear Delayed Feedbacks
,”
Nonlinear Dyn.
,
78
(
2
), pp.
907
919
.10.1007/s11071-014-1485-z
15.
Liu
,
H.
, and
Gao
,
X.
,
2021
, “
Analytical Study of Time-Delayed Feedback Control of Rectangular Prisms Undergoing Subcritical Galloping
,”
Nonlinear Dyn.
,
103
(
1
), pp.
103
114
.10.1007/s11071-020-06103-6
16.
Alhadidi
,
A. H.
,
Khazaaleh
,
S.
, and
Daqaq
,
M. F.
,
2021
, “
Suppression of Galloping Oscillations by Injecting a High-Frequency Excitation
,”
Trans. R. Soc. A
,
379
(
2198
), p.
20200244
.10.1098/rsta.2020.0244
17.
Dai
,
H. L.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2016
, “
Usefulness of Passive Non-Linear Energy Sinks in Controlling Galloping Vibrations
,”
Int. J. Nonlinear Mech.
,
81
, pp.
83
94
.10.1016/j.ijnonlinmec.2016.01.007
18.
Selwanis
,
M. M.
,
Franzini
,
G. R.
,
Béguin
,
C.
, and
Gosselin
,
F. P.
,
2021
, “
Wind Tunnel Demonstration of Galloping Mitigation With a Purely Nonlinear Energy Sink
,”
J. Fluids Struct.
,
100
, p.
103169
.10.1016/j.jfluidstructs.2020.103169
19.
Selwanis
,
M. M.
,
Franzini
,
G. R.
,
Béguin
,
C.
, and
Gosselin
,
F. P.
,
2022
, “
Multi-Ball Rotative Nonlinear Energy Sink for Galloping Mitigation
,”
J. Sound Vib.
,
526
, p.
116744
.10.1016/j.jsv.2022.116744
20.
Rosa Franzini
,
G.
,
Maciel
,
V. S. F.
,
Vernizzi
,
G. J.
, and
Zulli
,
D.
,
2023
, “
Simultaneous Passive Suppression and Energy Harvesting From Galloping Using a Bistable Piezoelectric Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
111
(
24
), pp.
22215
22236
.10.1007/s11071-023-08888-8
21.
Li
,
X.
,
Zhang
,
Y.-W.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2019
, “
Dynamics and Evaluation of a Nonlinear Energy Sink Integrated by a Piezoelectric Energy Harvester Under a Harmonic Excitation
,”
J. Vib. Control
,
25
(
4
), pp.
851
867
.10.1177/1077546318802456
22.
Fasihi
,
A.
,
Shahgholi
,
M.
, and
Ghahremani
,
S.
,
2022
, “
The Effects of Nonlinear Energy Sink and Piezoelectric Energy Harvester on Aeroelastic Instability of an Airfoil
,”
J. Vib. Control
,
28
(
11–12
), pp.
1418
1432
.10.1177/1077546321993585
23.
Luongo
,
A.
, and
Zulli
,
D.
,
2014
, “
Aeroelastic Instability Analysis of NES-Controlled Systems Via a Mixed Multiple Scale/Harmonic Balance Method
,”
J. Vib. Control
,
20
(
13
), pp.
1985
1998
.10.1177/1077546313480542
24.
Zulli
,
D.
,
Piccardo
,
G.
, and
Luongo
,
A.
,
2021
, “
On the Nonlinear Effects of the Mean Wind Force on the Galloping Onset in Shallow Cables
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3127
3148
.10.1007/s11071-020-05886-y
25.
Jiang
,
W.
,
Li
,
Y.
,
Ma
,
X.
,
Wang
,
Y.
,
Chen
,
L.
, and
Bi
,
Q.
,
2022
, “
Exploiting Internal Resonance to Improve Flow Energy Harvesting From Vortex-Induced Vibrations
,”
J. Intell. Mater. Syst. Struct.
,
33
(
3
), pp.
459
473
.10.1177/1045389X211023581
26.
Muthalif
,
A. G. A.
,
Hafizh
,
M.
,
Renno
,
J.
, and
Paurobally
,
M. R.
,
2021
, “
An Enhanced Hybrid Piezoelectric–Electromagnetic Energy Harvester Using Dual-Mass System for Vortex-Induced Vibrations
,”
J. Vib. Control
,
27
(
23–24
), pp.
2848
2861
.10.1177/10775463211041875
27.
Xing
,
J.
,
Fang
,
S.
,
Fu
,
X.
, and
Liao
,
W.-H.
,
2022
, “
A Rotational Hybrid Energy Harvester Utilizing Bistability for Low-Frequency Applications: Modelling and Experimental Validation
,”
Int. J. Mech. Sci.
,
222
, p.
107235
.10.1016/j.ijmecsci.2022.107235
28.
Cadiou
,
B.
,
Stephan
,
C.
,
Renoult
,
A.
, and
Michon
,
G.
,
2022
, “
Damping Adjustment of a Nonlinear Vibration Absorber Using an Electro– Magnetomechanical Coupling
,”
J. Sound Vib.
,
518
, p.
116508
.10.1016/j.jsv.2021.116508
You do not currently have access to this content.