Abstract

The symmetric monostable Duffing oscillator exhibits a superharmonic resonance of order three when excited harmonically at an excitation frequency that is one third its linear natural frequency. In this letter, it is shown that a certain class of periodic excitations can inherently quench the superharmonic resonance of order three. The Fourier series expansion of such excitations yields a harmonic component at the natural frequency whose magnitude can be properly tuned to completely quench the effect of the superharmonic component. Based on this understanding, the parameters of a piecewise periodic function and the modulus of the cosine Jacobi elliptic function are intentionally designed to passively suppress the superharmonic resonance. Such periodic functions can be used to replace single-frequency harmonic excitations whenever the effects of the superharmonic resonance are to be passively mitigated.

References

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
, New York.
2.
Peng
,
J.
,
Li
,
Y.
,
Li
,
L.
,
Lenci
,
S.
, and
Sun
,
H.
,
2024
, “
Time-Delay Feedback Control of a Suspended Cable Driven by Subharmonic and Superharmonic Resonance
,”
Chaos, Solitons Fractals
,
181
, p.
114646
.10.1016/j.chaos.2024.114646
3.
Leung
,
A. Y.
,
Ji
,
J. C.
, and
Chen
,
G.
,
2004
, “
Resonance Control for a Forced Single-Degree-of-Freedom Nonlinear System
,”
Int. J. Bifurcation Chaos
,
14
(
4
), pp.
1423
1429
.10.1142/S0218127404009843
4.
Ji
,
J.
, and
Zhang
,
N.
,
2011
, “
Suppression of Super-Harmonic Resonance Response Using a Linear Vibration Absorber
,”
Mech. Res. Commun.
,
38
(
6
), pp.
411
416
.10.1016/j.mechrescom.2011.05.014
5.
Kandil
,
A.
,
Hamed
,
Y. S.
,
Mohamed
,
M. S.
,
Awrejcewicz
,
J.
, and
Bednarek
,
M.
,
2022
, “
Third-Order Superharmonic Resonance Analysis and Control in a Nonlinear Dynamical System
,”
Mathematics
,
10
(
8
), p.
1282
.10.3390/math10081282
6.
Mohanty
,
S.
, and
Dwivedy
,
S.
,
2020
, “
Active Vibration Absorber for Superharmonic Resonance Condition
,”
J. Phys.: Conf. Ser.
,
1706
(
1
), p.
012102
.10.1088/1742-6596/1706/1/012102
7.
Ji
,
J.
, and
Zhang
,
N.
,
2009
, “
Suppression of Super-Harmonic Resonance Response of a Forced Nonlinear System Using a Linear Vibration Absorber
,”
Asia Pacific Vibration Conference
, Christchurch, New Zealand, Nov. 22–25, pp.
1
7
.https://opus.lib.uts.edu.au/bitstream/10453/10966/1/2009003170OK.pdf
8.
Beltrán-Carbajal
,
F.
, and
Silva-Navarro
,
G.
,
2014
, “
Active Vibration Control in Duffing Mechanical Systems Using Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
333
(
14
), pp.
3019
3030
.10.1016/j.jsv.2014.03.002
9.
Peng
,
J.
,
Xiang
,
M.
,
Li
,
L.
,
Sun
,
H.
, and
Wang
,
X.
,
2019
, “
Time-Delayed Feedback Control of Piezoelectric Elastic Beams Under Superharmonic and Subharmonic Excitations
,”
Appl. Sci.
,
9
(
8
), p.
1557
.10.3390/app9081557
10.
Nayfeh
,
A.
,
1984
, “
Quenching of Primary Resonance by a Superharmonic Resonance
,”
J. Sound Vib.
,
92
(
3
), pp.
363
377
.10.1016/0022-460X(84)90385-7
You do not currently have access to this content.