Abstract

Assessing the stability of quasi-periodic (QP) response is crucial, as the bifurcation of QP response is usually accompanied by a stability reversal. The largest Lyapunov exponent (LLE), as an important indicator for chaotic motion, can also be used for the stability analysis of QP response. The precise location of a stability reversal, however, is tough to achieve as a poor convergence rate would be usually encountered when solving the LLE. Herein a straightforward and precise approach is suggested to identify the critical point when a stability reversal happens. Our approach is based on an explicit differential equation that provides the LLE straightforwardly via numerical integration, and the corresponding covariant Lyapunov vector is simultaneously obtained. The major finding consists in the phase transition of the covariant Lyapunov vector, which can happen much early before the LLE reaches a relatively convergent value. More importantly, the phase transition can serve as a strong indicator to locate a stability reversal of the QP response qualitatively. Numerical examples are provided to verify of the effectiveness and wide applicability the presented approach.

References

1.
Sun
,
J. Q.
,
Hu
,
X. B.
, and
Zhang
,
Y. N.
,
2024
, “
Quasi-Periodic Breathers and Rogue Waves to the Focusing Davey–Stewartson Equation
,”
Phys. D: Nonlinear Phenom.
,
460
, p.
134084
.10.1016/j.physd.2024.134084
2.
Zheng
,
Z.
,
Lu
,
Z.
,
Liu
,
G.
, and
Chen
,
Y.
,
2022
, “
Twice Harmonic Balance Method for Stability and Bifurcation Analysis of Quasi-Periodic Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
12
), p.
121006
.10.1115/1.4055923
3.
Alcorta
,
R.
,
Chouvion
,
B.
, and
Montagnier
,
O.
,
2023
, “
Dynamics of a Non-Linear Jeffcott Rotor in Supercritical Regime
,”
Int. J. Non-Linear Mech.
,
148
, p.
104272
.10.1016/j.ijnonlinmec.2022.104272
4.
Raza
,
N.
,
Rani
,
B.
,
Chahlaoui
,
Y.
, and
Shah
,
N. A.
,
2023
, “
A Variety of New Rogue Wave Patterns for Three Coupled Nonlinear Maccari's Models in Complex Form
,”
Nonlinear Dyn.
,
111
(
19
), pp.
18419
18437
.10.1007/s11071-023-08839-3
5.
Ruzziconi
,
L.
, and
Hajjaj
,
A. Z.
,
2023
, “
Multiple Internal Resonance Couplings and Quasi-Periodicity Patterns in Hybrid-Shaped Micromachined Resonators
,”
Chaos, Solitons Fractals
,
177
, p.
114145
.10.1016/j.chaos.2023.114145
6.
Bhat
,
S. G.
,
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2022
, “
Order Reduction of Nonlinear Quasi-Periodic Systems Subjected to External Excitations
,”
Int. J. Non-Linear Mech.
,
142
, p.
103994
.
7.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2023
, “
The Singularity of Expanded Jacobian Matrix in Incremental Harmonic Balance Method Directly Locates Bifurcation Points of Steady-State Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
11
), p.
111004
.10.1115/1.4063400
8.
Ren
,
X.
, and
Zhao
,
S.
,
2023
, “
Reducibility for a Class of Quasi-Periodic Linear Schrödinger Equations and Its Application
,”
Nonlinear Dyn.
,
111
(
22
), pp.
21207
21239
.10.1007/s11071-023-08925-6
9.
Shaik
,
J.
,
Tiwari
,
S.
, and
Vyasarayani
,
C. P.
,
2023
, “
Floquet Theory for Linear Time-Periodic Delay Differential Equations Using Orthonormal History Functions
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
9
), p.
091005
.10.1115/1.4062633
10.
Lu
,
K.
,
Jin
,
Y.
,
Chen
,
Y.
,
Cao
,
Q.
, and
Zhang
,
Z.
,
2015
, “
Stability Analysis of Reduced Rotor Pedestal Looseness Fault Model
,”
Nonlinear Dyn.
,
82
(
4
), pp.
1611
1622
.10.1007/s11071-015-2264-1
11.
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2021
, “
Comparison of Poincaré Normal Forms and Floquet Theory for Analysis of Linear Time Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
014502
.10.1115/1.4048715
12.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
,
2002
,
Nonlinear Dynamics and Chaos
,
Wiley
, Chichester, UK.
13.
Johnson
,
R.
, and
Sell
,
G. R.
,
1981
, “
Smoothness of Spectral Subbundles and Reducibility of Quasi-Periodic Linear Differential Systems
,”
J. Differ. Equations
,
41
(
2
), pp.
262
288
.10.1016/0022-0396(81)90062-0
14.
Murdock
,
J.
,
1978
, “
On the Floquet Problem for Quasiperiodic Systems
,”
Proc. Am. Math. Soc.
,
68
(
2
), pp.
179
184
.10.1090/S0002-9939-1978-0481275-8
15.
Sharma
,
A.
,
2021
, “
Approximate Lyapunov-Perron Transformations: Computation and Applications to Quasi-Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
5
), p.
051005
.10.1115/1.4050614
16.
Kaas-Petersen
,
C.
,
1985
, “
Computation of Quasi-Periodic Solutions of Forced Dissipative Systems
,”
J. Comput. Phys.
,
58
(
3
), pp.
395
408
.10.1016/0021-9991(85)90170-6
17.
Chen
,
Y. M.
, and
Liu
,
J.
,
2023
, “
Circularly Distributed Multipliers With Deterministic Moduli Assessing the Stability of Quasiperiodic Response
,”
Phys. Rev. E
,
107
(
1-1
), p.
014218
.10.1103/PhysRevE.107.014218
18.
Subramanian
,
S. C.
,
Waswa
,
P. M.
, and
Redkar
,
S.
,
2022
, “
Computation of Lyapunov–Perron Transformation for Linear Quasi-Periodic Systems
,”
J. Vib. Control
,
28
(
11–12
), pp.
1402
1417
.10.1177/1077546321993568
19.
Dieci
,
L.
,
Russell
,
R. D.
, and
Vleck
,
E. S. V.
,
1997
, “
On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems
,”
SIAM J. Numer. Anal.
,
34
(
1
), pp.
402
423
.10.1137/S0036142993247311
20.
Dabrowski
,
A.
,
Balcerzak
,
M.
,
Zarychta
,
S.
,
Denysenko
,
V.
,
Sagan
,
T.
, and
Stefanski
,
A.
,
2023
, “
Investigations of Complex Systems' Dynamics, Based on Reduced Amount of Information: Introduction to the Method
,”
Nonlinear Dyn.
,
111
(
17
), pp.
16215
16236
.10.1007/s11071-023-08665-7
21.
Pölöskei
,
T.
, and
Szekrényes
,
A.
,
2017
, “
Quasi-Periodic Excitation in a Delaminated Composite Beam
,”
Compos. Struct.
,
159
, pp.
677
688
.10.1016/j.compstruct.2016.09.093
22.
Wen
,
G.
,
Yin
,
S.
,
Xu
,
H.
,
Zhang
,
S.
, and
Lv
,
Z.
,
2016
, “
Analysis of Grazing Bifurcation From Periodic Motion to Quasi-Periodic Motion in Impact-Damper Systems
,”
Chaos, Solitons Fractals
,
83
, pp.
112
118
.10.1016/j.chaos.2015.11.039
23.
Vannitsem
,
S.
,
Demaeyer
,
J.
,
Cruz
,
L. D.
, and
Ghil
,
M.
,
2015
, “
Low-Frequency Variability and Heat Transport in a Low-Order Nonlinear Coupled Ocean–Atmosphere Model
,”
Phys. D: Nonlinear Phenom.
,
309
, pp.
71
85
.10.1016/j.physd.2015.07.006
24.
Ginelli
,
F.
,
Poggi
,
P.
,
Turchi
,
A.
,
Chaté
,
H.
,
Livi
,
R.
, and
Politi
,
A.
,
2007
, “
Characterizing Dynamics With Covariant Lyapunov Vectors
,”
Phys. Rev. Lett.
,
99
(
13
), p.
130601
.10.1103/PhysRevLett.99.130601
25.
Kuptsov
,
P. V.
, and
Parlitz
,
U.
,
2012
, “
Theory and Computation of Covariant Lyapunov Vectors
,”
J. Nonlinear Sci.
,
22
(
5
), pp.
727
762
.10.1007/s00332-012-9126-5
26.
Yang
,
H.
, and
Radons
,
G.
,
2010
, “
Comparison Between Covariant and Orthogonal Lyapunov Vectors
,”
Phys. Rev. E
,
82
(
4
), p.
046204
.10.1103/PhysRevE.82.046204
27.
Ogundele
,
A. D.
,
Agboola
,
O. A.
, and
Sinha
,
S. C.
,
2021
, “
Application of Lyapunov–Floquet Transformation to the Nonlinear Spacecraft Relative Motion With Periodic-Coefficients
,”
Acta Astronaut.
,
187
, pp.
24
35
.10.1016/j.actaastro.2021.06.024
28.
Wooden
,
S. M.
, and
Sinha
,
S. C.
,
2006
, “
Analysis of Periodic-Quasiperiodic Nonlinear Systems Via Lyapunov-Floquet Transformation and Normal Forms
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
263
273
.10.1007/s11071-006-9072-6
29.
Jorba
,
À.
, and
Simó
,
C.
,
1992
, “
On the Reducibility of Linear Differential Equations With Quasiperiodic Coefficients
,”
J. Differ. Equations
,
98
(
1
), pp.
111
124
.10.1016/0022-0396(92)90107-X
30.
Puig
,
J.
,
2002
, “
Reducibility of Linear Differential Equations With Quasi-Periodic Coefficients: A Survey
,”
epub
.http://www.maia.ub.edu/dsg/2002/0201puig.pdf
31.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D: Nonlinear Phenom.
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
32.
Li
,
H.
,
Shen
,
Y.
,
Han
,
Y.
,
Dong
,
J.
, and
Li
,
J.
,
2023
, “
Determining Lyapunov Exponents of Fractional-Order Systems: A General Method Based on Memory Principle
,”
Chaos, Solitons Fractals
,
168
, p.
113167
.10.1016/j.chaos.2023.113167
33.
Bjerklöv
,
K.
,
2006
, “
Explicit Examples of Arbitrarily Large Analytic Ergodic Potentials With Zero Lyapunov Exponent
,”
Geometric Funct. Anal. GAFA
,
16
(
6
), pp.
1183
1200
.10.1007/s00039-006-0581-8
34.
Schilder
,
F.
,
Vogt
,
W.
,
Schreiber
,
S.
, and
Osinga
,
H. M.
,
2006
, “
Fourier Methods for Quasi‐Periodic Oscillations
,”
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
629
671
.10.1002/nme.1632
35.
Zheng
,
Z. C.
,
Lu
,
Z.
,
Liu
,
J.
, and
Chen
,
Y.
,
2023
, “
A Universal Phase Condition in Solving Quasi-Periodic Responses With Multiple Self-Excited Fundamental Frequencies
,”
Commun. Nonlinear Sci. Numer. Simul.
,
127
, p.
107546
.10.1016/j.cnsns.2023.107546
36.
Zhang
,
G.
, and
Wu
,
Z.
,
2019
, “
Homotopy Analysis Method for Approximations of Duffing Oscillator With Dual Frequency Excitations
,”
Chaos, Solitons Fractals
,
127
, pp.
342
353
.10.1016/j.chaos.2019.07.024
37.
Qian
,
Y.
, and
Chen
,
S.
,
2010
, “
Accurate Approximate Analytical Solutions for Multi-Degree-of-Freedom Coupled Van Der Pol-Duffing Oscillators by Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
10
), pp.
3113
3130
.10.1016/j.cnsns.2009.11.027
38.
Rangarajan
,
G.
,
Habib
,
S.
, and
Ryne
,
R. D.
,
1998
, “
Lyapunov Exponents Without Rescaling and Reorthogonalization
,”
Phys. Rev. Lett.
,
80
(
17
), pp.
3747
3750
.10.1103/PhysRevLett.80.3747
39.
O'Brien
,
R. T.
, and
Iglesias
,
P. A.
,
2001
, “
On the Poles and Zeros of Linear, Time-Varying Systems
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
48
(
5
), pp.
565
577
.10.1109/81.922459
40.
Zhou
,
B.
,
Cai
,
G. B.
, and
Duan
,
G. R.
,
2013
, “
Stabilisation of Time-Varying Linear Systems Via Lyapunov Differential Equations
,”
Int. J. Control
,
86
(
2
), pp.
332
347
.10.1080/00207179.2012.728008
You do not currently have access to this content.