Abstract

In this article, we discuss the fractional temporal-spatial reaction-diffusion model with Neumann boundary conditions in one- and two-dimensional cases. The problem is solved by using a novel approach that depends on the approximation of a variable-order (VO) Caputo fractional derivative in the form of an operational matrix based on the shifted Vieta-Fibonacci (SVF) and collocation procedures. In this proposed scheme, first, the shifted Vieta-Fibonacci and operational matrix are used to approximate the dependent variable and Caputo derivatives of variable order, respectively, to construct the residual connected with the proposed problem. After that, the residual is collocated at some points of the domain, which produces a system of algebraic equations, and this system is solved by an appropriate numerical technique. The convergence and error analysis of the scheme are also analyzed. In this article, we also analyze the order of convergence for the solution of the considered problem. For validation purposes, the proposed scheme is applied to some particular cases of the proposed model, and the comparisons are made with the exact solution. It is found that the scheme is sufficiently accurate, and the accuracy enhances as the degree of approximating polynomials improves.

References

1.
Karpman
,
V.
,
1996
, “
Stabilization of Soliton Instabilities by Higher-Order Dispersion: Fourth-Order Nonlinear Schrödinger-Type Equations
,”
Phys. Rev. E
,
53
(
2
), pp.
R1336
R1339
.10.1103/PhysRevE.53.R1336
2.
Myers
,
T. G.
,
Charpin
,
J. P.
, and
Chapman
,
S. J.
,
2002
, “
The Flow and Solidification of a Thin Fluid Film on an Arbitrary Three-Dimensional Surface
,”
Phys. Fluids
,
14
(
8
), pp.
2788
2803
.10.1063/1.1488599
3.
Myers
,
T. G.
, and
Charpin
,
J. P.
,
2004
, “
A Mathematical Model for Atmospheric Ice Accretion and Water Flow on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5483
5500
.10.1016/j.ijheatmasstransfer.2004.06.037
4.
Halpern
,
D.
,
Jensen
,
O.
, and
Grotberg
,
J.
,
1998
, “
A Theoretical Study of Surfactant and Liquid Delivery Into the Lung
,”
J. Appl. Physiol.
,
85
(
1
), pp.
333
352
.10.1152/jappl.1998.85.1.333
5.
Toga
,
A. W.
,
1998
,
Brain Warping
,
Elsevier
, Academic Press, New York.
6.
Mémoli
,
F.
,
Sapiro
,
G.
, and
Thompson
,
P.
,
2004
, “
Implicit Brain Imaging
,”
NeuroImage
,
23
, pp.
S179
S188
.10.1016/j.neuroimage.2004.07.072
7.
Hornreich
,
R.
,
Luban
,
M.
, and
Shtrikman
,
S.
,
1975
, “
Critical Behavior at the Onset of k→-Space Instability on the λ Line
,”
Phys. Rev. Lett.
,
35
(
25
), pp.
1678
1681
.10.1103/PhysRevLett.35.1678
8.
Aronson
,
D. G.
, and
Weinberger
,
H. F.
,
1978
, “
Multidimensional Nonlinear Diffusion Arising in Population Genetics
,”
Adv. Math.
,
30
(
1
), pp.
33
76
.10.1016/0001-8708(78)90130-5
9.
Guozhen
,
Z.
,
1982
, “
Experiments on Director Waves in Nematic Liquid Crystals
,”
Phys. Rev. Lett.
,
49
(
18
), pp.
1332
1335
.10.1103/PhysRevLett.49.1332
10.
Coullet
,
P.
,
Elphick
,
C.
, and
Repaux
,
D.
,
1987
, “
Nature of Spatial Chaos
,”
Phys. Rev. Lett.
,
58
(
5
), pp.
431
434
.10.1103/PhysRevLett.58.431
11.
Dee
,
G.
, and
van Saarloos
,
W.
,
1988
, “
Bistable Systems With Propagating Fronts Leading to Pattern Formation
,”
Phys. Rev. Lett.
,
60
(
25
), pp.
2641
2644
.10.1103/PhysRevLett.60.2641
12.
Galaktionov
,
V. A.
,
2010
, “
Incomplete Self-Similar Blow-Up in a Semilinear Fourth-Order Reaction-Diffusion Equation
,”
Stud. Appl. Math.
,
124
(
4
), pp.
347
381
.10.1111/j.1467-9590.2009.00474.x
13.
Danumjaya
,
P.
, and
Pani
,
A. K.
,
2012
, “
Mixed Finite Element Methods for a Fourth Order Reaction Diffusion Equation
,”
Numer. Methods Partial Differ. Equations
,
28
(
4
), pp.
1227
1251
.10.1002/num.20679
14.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
, Germany.
15.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
, Vol.
204
,
Elsevier
, New York.
16.
Mittal
,
R.
, and
Jiwari
,
R.
,
2012
, “
A Differential Quadrature Method for Numerical Solutions of Burgers'-Type Equations
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
7
), pp.
880
895
.10.1108/09615531211255761
17.
Yadav
,
S.
,
Kumar
,
D.
, and
Nisar
,
K. S.
,
2021
, “
A Reliable Numerical Method for Solving Fractional Reaction-Diffusion Equations
,”
J. King Saud Univ.-Sci.
,
33
(
2
), p.
101320
.10.1016/j.jksus.2020.101320
18.
Mubaraki
,
A. M.
,
Nuruddeen
,
R. I.
, and
Gómez-Aguilar
,
J.
,
2023
, “
Modeling the Dispersion of Waves on a Loaded Bi-Elastic Cylindrical Tube With Variable Material Constituents
,”
Results Phys.
,
53
, p.
106927
.10.1016/j.rinp.2023.106927
19.
Islam
,
M. T.
,
Sarkar
,
T. R.
,
Abdullah
,
F. A.
, and
Gómez-Aguilar
,
J.
,
2023
, “
Characteristics of Dynamic Waves in Incompressible Fluid Regarding Nonlinear Boiti-Leon-Manna-Pempinelli Model
,”
Phys. Scr.
,
98
(
8
), p.
085230
.10.1088/1402-4896/ace743
20.
Antil
,
H.
, and
Bartels
,
S.
,
2017
, “
Spectral Approximation of Fractional PDEs in Image Processing and Phase Field Modeling
,”
Comput. Methods Appl. Math.
,
17
(
4
), pp.
661
678
.10.1515/cmam-2017-0039
21.
Antil
,
H.
, and
Rautenberg
,
C. N.
,
2019
, “
Sobolev Spaces With non-Muckenhoupt Weights, Fractional Elliptic Operators, and Applications
,”
SIAM J. Math. Anal.
,
51
(
3
), pp.
2479
2503
.10.1137/18M1224970
22.
Li
,
H.
,
Ur Rahman
,
G.
,
Naz
,
H.
, and
Gómez-Aguilar
,
J.
,
2024
, “
Modeling of Implicit Multi Term Fractional Delay Differential Equation: Application in Pollutant Dispersion Problem
,”
Alexandria Eng. J.
,
94
, pp.
1
22
.10.1016/j.aej.2024.03.021
23.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
57
98
.10.1023/A:1016586905654
24.
Garrappa
,
R.
,
Giusti
,
A.
, and
Mainardi
,
F.
,
2021
, “
Variable-Order Fractional Calculus: A Change of Perspective
,”
Commun. Nonlinear Sci. Numer. Simul.
,
102
, p.
105904
.10.1016/j.cnsns.2021.105904
25.
Inc
,
M.
,
2008
, “
The Approximate and Exact Solutions of the Space-and Time-Fractional Burgers Equations With Initial Conditions by Variational Iteration Method
,”
J. Math. Anal. Appl.
,
345
(
1
), pp.
476
484
.10.1016/j.jmaa.2008.04.007
26.
Sakar
,
M. G.
, and
Ergören
,
H.
,
2015
, “
Alternative Variational Iteration Method for Solving the Time-Fractional Fornberg–Whitham Equation
,”
Appl. Math. Modell.
,
39
(
14
), pp.
3972
3979
.10.1016/j.apm.2014.11.048
27.
Jafari
,
H.
, and
Daftardar-Gejji
,
V.
,
2006
, “
Solving Linear and Nonlinear Fractional Diffusion and Wave Equations by Adomian Decomposition
,”
Appl. Math. Comput.
,
180
(
2
), pp.
488
497
.10.1016/j.amc.2005.12.031
28.
Zeng
,
F.
,
Liu
,
F.
,
Li
,
C.
,
Burrage
,
K.
,
Turner
,
I.
, and
Anh
,
V.
,
2014
, “
A Crank–Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation
,”
SIAM J. Numer. Anal.
,
52
(
6
), pp.
2599
2622
.10.1137/130934192
29.
Zheng
,
R.
,
Liu
,
F.
, and
Jiang
,
X.
,
2020
, “
A Legendre Spectral Method on Graded Meshes for the Two-Dimensional Multi-Term Time-Fractional Diffusion Equation With Non-Smooth Solutions
,”
Appl. Math. Lett.
,
104
, p.
106247
.10.1016/j.aml.2020.106247
30.
Ali
,
I.
,
Haq
,
S.
,
Hussain
,
M.
,
Nisar
,
K. S.
, and
Arifeen
,
S. U.
,
2024
, “
On the Analysis and Application of a Spectral Collocation Scheme for the Nonlinear Two-Dimensional Fractional Diffusion Equation
,”
Results Phys.
,
56
, p.
107222
.10.1016/j.rinp.2023.107222
31.
Shi
,
Z.
,
Zhao
,
Y.
,
Liu
,
F.
,
Tang
,
Y.
,
Wang
,
F.
, and
Shi
,
Y.
,
2017
, “
High Accuracy Analysis of an H1-Galerkin Mixed Finite Element Method for Two-Dimensional Time Fractional Diffusion Equations
,”
Comput. Math. Appl.
,
74
(
8
), pp.
1903
1914
.10.1016/j.camwa.2017.06.057
32.
Abbaszadeh
,
M.
, and
Dehghan
,
M.
,
2019
, “
Analysis of Mixed Finite Element Method (MFEM) for Solving the Generalized Fractional Reaction–Diffusion Equation on Nonrectangular Domains
,”
Comput. Math. Appl.
,
78
(
5
), pp.
1531
1547
.10.1016/j.camwa.2019.03.040
33.
Saadatmandi
,
A.
,
Dehghan
,
M.
, and
Azizi
,
M.-R.
,
2012
, “
The Sinc–Legendre Collocation Method for a Class of Fractional Convection–Diffusion Equations With Variable Coefficients
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4125
4136
.10.1016/j.cnsns.2012.03.003
34.
Shirzadi
,
A.
,
Ling
,
L.
, and
Abbasbandy
,
S.
,
2012
, “
Meshless Simulations of the Two-Dimensional Fractional-Time Convection–Diffusion–Reaction Equations
,”
Eng. Anal. Boundary Elem.
,
36
(
11
), pp.
1522
1527
.10.1016/j.enganabound.2012.05.005
35.
Yang
,
J.
,
Zhao
,
Y.
,
Liu
,
N.
,
Bu
,
W.
,
Xu
,
T.
, and
Tang
,
Y.
,
2015
, “
An Implicit MLS Meshless Method for 2-D Time Dependent Fractional Diffusion–Wave Equation
,”
Appl. Math. Modell.
,
39
(
3–4
), pp.
1229
1240
.10.1016/j.apm.2014.08.005
36.
Amin
,
R.
,
Hadi
,
F.
,
Altanji
,
M.
,
Nisar
,
K. S.
,
Sumelka
., and
W.
Hafsa
,
2023
, “
Solution of Variable-Order Nonlinear Fractional Differential Equations Using Haar Wavelet Collocation Technique
,”
Fractals
,
31
(
2
), p.
2340022
.10.1142/S0218348X23400224
37.
Yadav
,
P.
,
Jahan
,
S.
, and
Nisar
,
K. S.
,
2023
, “
Fibonacci Wavelet Method for Time Fractional Convection–Diffusion Equations
,”
Math. Methods Appl. Sci.
,
47
(
4
), pp.
2639
2655
.10.1002/mma.9770
38.
Ahmed
,
S.
,
Jahan
,
S.
, and
Nisar
,
K. S.
,
2024
, “
Haar Wavelet Based Numerical Technique for the Solutions of Fractional Advection Diffusion Equations
,”
J. Math. Comput. Sci.
,
34
(
3
), pp.
217
233
.10.22436/jmcs.034.03.02
39.
Liu
,
Y.
,
Du
,
Y.
,
Li
,
H.
,
He
,
S.
, and
Gao
,
W.
,
2015
, “
Finite Difference/Finite Element Method for a Nonlinear Time-Fractional Fourth-Order Reaction–Diffusion Problem
,”
Comput. Math. Appl.
,
70
(
4
), pp.
573
591
.10.1016/j.camwa.2015.05.015
40.
Liu
,
Y.
,
Du
,
Y.
,
Li
,
H.
,
Li
,
J.
, and
He
,
S.
,
2015
, “
A Two-Grid Mixed Finite Element Method for a Nonlinear Fourth-Order Reaction–Diffusion Problem With Time-Fractional Derivative
,”
Comput. Math. Appl.
,
70
(
10
), pp.
2474
2492
.10.1016/j.camwa.2015.09.012
41.
Sun
,
H.
,
Sun
,
Z-Z.
, and
Du
,
R.
,
2019
, “
A Linearized Second-Order Difference Scheme for the Nonlinear Time-Fractional Fourth-Order Reaction-Diffusion Equation
,”
Numer. Math.: Theory, Methods Appl.
,
12
(
4
), pp.
1168
1190
.10.4208/nmtma.OA-2017-0144
42.
Abbaszadeh
,
M.
, and
Dehghan
,
M.
,
2020
, “
Direct Meshless Local Petrov–Galerkin (DMLPG) Method for Time-Fractional Fourth-Order Reaction–Diffusion Problem on Complex Domains
,”
Comput. Math. Appl.
,
79
(
3
), pp.
876
888
.10.1016/j.camwa.2019.08.001
43.
Nikan
,
O.
,
Machado
,
J. T.
, and
Golbabai
,
A.
,
2021
, “
Numerical Solution of Time-Fractional Fourth-Order Reaction-Diffusion Model Arising in Composite Environments
,”
Appl. Math. Modell.
,
89
, pp.
819
836
.10.1016/j.apm.2020.07.021
44.
Sun
,
H.
,
Cao
,
W.
, and
Zhang
,
M.
,
2023
, “
Energy Stability of a Temporal Variable-Step Difference Scheme for Time-Fractional Nonlinear Fourth-Order Reaction–Diffusion Equation
,”
Int. J. Comput. Math.
,
100
(
5
), pp.
991
1008
.10.1080/00207160.2023.2167517
45.
Haghi
,
M.
,
Ilati
,
M.
, and
Dehghan
,
M.
,
2023
, “
A Fourth-Order Compact Difference Method for the Nonlinear Time-Fractional Fourth-Order Reaction–Diffusion Equation
,”
Eng. Comput.
,
39
(
2
), pp.
1329
1340
.10.1007/s00366-021-01524-2
46.
Zeng
,
Y.
,
Li
,
Y.
,
Zeng
,
Y.
,
Cai
,
Y.
, and
Luo
,
Z.
,
2024
, “
The Dimension Reduction Method of Two-Grid Crank–Nicolson Mixed Finite Element Solution Coefficient Vectors for Nonlinear Fourth-Order Reaction Diffusion Equation With Temporal Fractional Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
133
, p.
107962
.10.1016/j.cnsns.2024.107962
47.
Sharma
,
R.
, and Rajeev
2023
, “
An Operational Matrix Approach to Solve a 2D Variable-Order Reaction Advection Diffusion Equation With Vieta–Fibonacci Polynomials
,”
Spec. Top. Rev. Porous Media: Int. J.
,
14
(
5
), pp.
79
96
.10.1615/SpecialTopicsRevPorousMedia.2023048034
48.
Sharma
,
R.
, and
Rajeev
,
2024
, “
A Numerical Approach Based on Vieta–Fibonacci Polynomials to Solve Fractional Order Advection–Reaction Diffusion Problem
,”
J. Anal.
, pp.
1
25
.10.1007/s41478?024?00804?6
49.
Singh
,
M.
, Das, S., and
Rajeev
,
2024
, “
An Innovative Vieta–Fibonacci Wavelet Collocation Method for the Numerical Solution of Three-Component Brusselator Reaction Diffusion System of Fractional Order
,”
J. Math. Chem.
,
62
(
7
), pp.
1558
1594
.10.1007/s10910-024-01621-9
50.
Zhang
,
H.
,
Yang
,
X.
, and
Xu
,
D.
,
2019
, “
A High-Order Numerical Method for Solving the 2D Fourth-Order Reaction-Diffusion Equation
,”
Numer. Algorithms
,
80
(
3
), pp.
849
877
.10.1007/s11075-018-0509-z
51.
Vong
,
S.
, and
Wang
,
Z.
,
2014
, “
Compact Finite Difference Scheme for the Fourth-Order Fractional Subdiffusion System
,”
Adv. Appl. Math. Mech.
,
6
(
4
), pp.
419
435
.10.4208/aamm.2014.4.s1
52.
Zhang
,
P.
, and
Pu
,
H.
,
2017
, “
A Second-Order Compact Difference Scheme for the Fourth-Order Fractional Sub-Diffusion Equation
,”
Numer. Algorithms
,
76
(
2
), pp.
573
598
.10.1007/s11075-017-0271-7
You do not currently have access to this content.