Abstract

The dual-phase-lag (DPL) model of nonclassical diffusion plays an expanding role for applications involving transient heat, mass, and momentum transfer. To open a new realm of applications for the model, the work reported here introduces RLC-type (resistor–inductor–capacitor) and RCC-type (resistor–capacitor–capacitor) electric circuits that behave as discrete analogs of first-order, continuum DPL diffusion. Importantly, the phase lags are two time-scales representing departures from classical diffusion that define the wave-like and over-diffusive regimes of DPL behavior. Expressions for these phase lags arise while deriving the difference–differential equations that govern the circuits. Furthermore, simulations exhibit DPL behavior for simple, one-dimensional ladder circuits subjected to step increases in boundary voltages. In particular, the subsequent voltage disturbances in the circuits propagate faster in the over-diffusive regime than in the wave-like regime. The simulations also show that DPL behavior stems from transient divisions of current between RL components in the wave-like circuit and between RC components in the over-diffusive circuit. Consequently, adopting the DPL perspective in the design of electronic systems may inspire novel applications that take advantage of DPL behavior. Finally, the circuits introduced here may lead to the study of DPL diffusion in analogous scenarios of heat, mass, and momentum transfer that are difficult to access experimentally.

References

1.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Microscales
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
2.
Tzou
,
D. Y.
,
2015
,
Macro- to Microscale Heat Transfer: The Lagging Behavior
, 2nd ed.,
Wiley
,
West Sussex, UK
.
3.
Khader
,
S. E.
, and
Khedr
,
M. E. M.
,
2024
, “
Dual-Phase-Lag Model for a Solid Cylinder Made of Two Different Thermoelastic Materials
,”
Mech. Compos. Mater.
,
60
(
4
), pp.
645
658
.10.1007/s11029-024-10217-y
4.
Lukashchuk
,
S. Y.
,
2024
, “
A Semi-Explicit Algorithm for Parameters Estimation in a Time-Fractional Dual-Phase-Lag Heat Conduction Model
,”
Modelling
,
5
(
3
), pp.
776
796
.10.3390/modelling5030041
5.
Kovács
,
R.
,
2024
, “
Heat Equations Beyond Fourier: From Heat Waves to Thermal Metamaterials
,”
Phys. Rep.
,
1048
, pp.
1
75
.10.1016/j.physrep.2023.11.001
6.
Zubert
,
M.
,
Janicki
,
M.
,
Raszkowski
,
T.
,
Samson
,
A.
,
Nowak
,
P.
, and
Krzysztof
,
P.
,
2014
, “
The Heat Transport in Nanoelectronic Devices and PDEs Translation Into Hardware Description Languages
,”
Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform.
,
64
(
3
), pp.
69
80
.https://journals.ltn.lodz.pl/Bulletin/issue/view/203/203
7.
Nagel
,
W.
, and
Pederson
,
D. O.
,
1973
, “
SPICE (Simulation Program With Integrated Circuit Emphasis)
,” EECS Department, University of California, Berkeley, Berkeley, CA, Report No. UCB/ERL M382.
8.
Tang
,
D. W.
, and
Araki
,
N.
,
1999
, “
Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses
,”
Int. J. Heat Mass Transfer
,
42
(
5
), pp.
855
860
.10.1016/S0017-9310(98)00244-0
9.
Hayt
,
W. H.
, Jr.
,
Kemmerly
,
J. E.
,
Phillips
,
J. D.
, and
Durbin
,
S. M.
,
2019
,
Engineering Circuit Analysis
, 9th ed.,
McGraw-Hill
,
New York
.
10.
Gheitaghy
,
A. M.
, and
Talaee
,
M. R.
,
2013
, “
Solving Hyperbolic Heat Conduction Using Electrical Simulation
,”
J. Mech. Sci. Technol.
,
27
(
12
), pp.
3885
3891
.10.1007/s12206-013-0933-x
11.
Robertson
,
A. F.
, and
Gross
,
D.
,
1958
, “
An Electrical-Analog Method for Transient Heat-Flow Analysis
,”
J. Res. Natl. Inst. Stand. Technol.
,
61
(
2
), pp.
105
115
.10.6028/jres.061.016
12.
Kudinov
,
I.
,
Kudinov
,
V.
,
Eremin
,
A.
, and
Trubitsyn
,
K.
,
2021
, “
A Mathematical Model for Electromagnetic Oscillation Propagation That Accounts for Single and Dual-Phase-Lag
,”
J. Electromagn. Waves Appl.
, 35(17), pp.
2304
2322
.10.1080/09205071.2021.1945497
13.
Sobrino
,
T.
,
Alonso
,
M.
,
PérezMuñuzuri
,
V.
, and
Pérez-Villar
,
V.
,
1993
, “
Reaction-Diffusion Processes in a One-Dimensional Array of Active Non-Linear Circuits
,”
Eur. J. Phys.
,
14
(
2
), pp.
74
79
.10.1088/0143-0807/14/2/006
14.
Gerald
,
C. F.
, and
Wheatley
,
P. O.
,
1990
,
Applied Numerical Analysis
, 4th ed.,
Addison-Wesley
,
New York
, pp.
352
353
.
15.
Spectrum Software (closed)
, “
Microcap 12.2.0.5
,” Internet Archive, last accessed Dec. 3, 2024, https://archive.org/details/mc12cd_202110
16.
Gandolfi
,
M.
,
Giannetti
,
C.
, and
Banfi
,
F.
,
2020
, “
Temperonic Crystal: A Superlattice for Temperature Waves in Graphene
,”
Phys. Rev. Lett.
,
125
(
26
), p.
265901
.10.1103/PhysRevLett.125.265901
17.
Mouser Electronics
,
2024
,
Mansfield, TX
, accessed Dec. 3, 2024, https://mouser.com
You do not currently have access to this content.