Graphical Abstract Figure

Nodal-Lie-Group beam element.

Graphical Abstract Figure

Nodal-Lie-Group beam element.

Close modal

Abstract

A new 12DOF beam element is proposed to simulate large deformation and large rotation based on the 24DOF absolute nodal coordinate formulation (ANCF) beam element proposed before. The centerline of the beam is interpolated by Hermite shape functions, and the frame of the beam is interpolated by linear shape functions. To reduce DOFs, the Lie-group method is used to normalize and orthogonalize the frame on each node of the beam. This way of using the Lie-group method keeps a linear relationship between the nodal vectors and shape functions and leads to the constant mass matrix and elastic tensors. Therefore, the generalized elastic and inertial forces do not require Gaussian integration at each time-step. To avoid singularity of the rotation, a relative rotation vector is adopted; correspondingly, the generalized-α integrator based on the Lie group is used to solve the dynamic equations. To improve the convergency speed and alleviate the shear locking and Poisson locking problems of this element, the assumed natural strain (ANS) method is adopted. To improve the calculational accuracy of axis stretching and torsion effects, the enhanced assumed strain (EAS) method is adopted. The formulas presented in this paper have been successfully tested in several static and dynamic examples of other ANCF beam elements and analytic solutions.

References

1.
Yu
,
X.
,
You
,
B.
,
Liu
,
X.
, and
Cao
,
Q.
,
2021
, “
Nonlinear Dynamics Investigation of Variable Cross-Sectional Solar-Sail Masts
,”
J. Spacecr. Rockets
,
58
(
4
), pp.
936
946
.10.2514/1.A34925
2.
Renda
,
F.
,
Boyer
,
F.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2018
, “
Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1518
1533
.10.1109/TRO.2018.2868815
3.
Liu
,
J.-P.
,
Cheng
,
Z.-B.
, and
Ren
,
G.-X.
,
2018
, “
An Arbitrary Lagrangian-Eulerian Formulation of a Geometrically Exact Timoshenko Beam Running Through a Tube
,”
Acta Mech.
,
229
(
8
), pp.
3161
3188
.10.1007/s00707-018-2161-z
4.
Ren
,
H.
,
Yuan
,
T.
,
Huo
,
M.
,
Zhao
,
C.
, and
Zeng
,
S.
,
2021
, “
Dynamics and Control of a Full-Scale Flexible Electric Solar Wind Sail Spacecraft
,”
Aerosp. Sci. Technol.
,
119
, p.
107087
.10.1016/j.ast.2021.107087
5.
Bai
,
R.
,
Chen
,
C.
, and
Awtar
,
S.
,
2021
, “
Closed-Form Solution for Nonlinear Spatial Deflections of Strip Flexures of Large Aspect Ratio Considering Second Order Load-Stiffening
,”
Mech. Mach. Theory
,
161
, p.
104324
.10.1016/j.mechmachtheory.2021.104324
6.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Renda
,
F.
,
2021
, “
Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
847
863
.10.1109/TRO.2020.3036618
7.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
8.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.10.1007/s11071-006-1856-1
9.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
,
2010
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011010
.10.1115/1.4000320
10.
Zienkiewicz
,
O. C.
,
Owen
,
D. R. J.
, and
Lee
,
K. N.
,
1974
, “
Least Square-Finite Element for Elasto-Static Problems. Use of ‘Reduced' Integration
,”
Int. J. Numer. Methods Eng.
,
8
(
2
), pp.
341
358
.10.1002/nme.1620080212
11.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
12.
Simo
,
J. C.
, and
Rifai
,
M. S.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
(
8
), pp.
1595
1638
.10.1002/nme.1620290802
13.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
,
2005
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
ASME
Paper No. DETC2005-85104.10.1115/DETC2005-85104
14.
Hussein
,
B. A.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2007
, “
Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
2
), pp.
146
154
.10.1115/1.2447353
15.
Ren
,
H.
,
2015
, “
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061005
.10.1115/1.4028610
16.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V.-V.
, and
Mikkola
,
A.
,
2017
, “
Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1075
1091
.10.1007/s11071-016-3296-x
17.
Yu
,
H.
,
Zhao
,
C.
,
Zheng
,
B.
, and
Wang
,
H.
,
2018
, “
A New Higher-Order Locking-Free Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
232
(
19
), pp.
3410
3423
.10.1177/0954406217736550
18.
Tang
,
Y.
,
Tian
,
Q.
, and
Hu
,
H.
,
2022
, “
Efficient Modeling and Order Reduction of New 3D Beam Elements With Warping Via Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
109
(
4
), pp.
2319
2354
.10.1007/s11071-022-07547-8
19.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.10.1016/0045-7825(86)90079-4
20.
Bauchau
,
O. A.
,
Han
,
S.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2014
, “
Comparison of the Absolute Nodal Coordinate and Geometrically Exact Formulations for Beams
,”
Multibody Syst. Dyn.
,
32
(
1
), pp.
67
85
.10.1007/s11044-013-9374-7
21.
Stuelpnagel
,
J.
,
1964
, “
On the Parametrization of the Three-Dimensional Rotation Group
,”
SIAM Rev.
,
6
(
4
), pp.
422
430
.10.1137/1006093
22.
Brüls
,
O.
,
Alberto
,
C.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
23.
Ren
,
H.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2018
, “
An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011012
.10.1115/1.4037513
24.
Pai
,
P. F.
,
2014
, “
Problems in Geometrically Exact Modeling of Highly Flexible Beams
,”
Thin-Walled Struct.
,
76
, pp.
65
76
.10.1016/j.tws.2013.11.008
25.
Lestringant
,
C.
,
Audoly
,
B.
, and
Kochmann
,
D. M.
,
2020
, “
A Discrete, Geometrically Exact Method for Simulating Nonlinear, Elastic, and Inelastic Beams
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112741
.10.1016/j.cma.2019.112741
26.
Zhao
,
Z.
, and
Ren
,
G.
,
2012
, “
A Quaternion-Based Formulation of Euler–Bernoulli Beam Without Singularity
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1825
1835
.10.1007/s11071-011-0109-0
27.
Ebrahimi
,
M.
,
Butscher
,
A.
, and
Cheong
,
H.
,
2021
, “
A Low Order, Torsion Deformable Spatial Beam Element Based on the Absolute Nodal Coordinate Formulation and Bishop Frame
,”
Multibody Syst. Dyn.
,
51
(
3
), pp.
247
278
.10.1007/s11044-020-09765-7
28.
Yang
,
C.
, and
Gong
,
Y.
,
2023
, “
An Enhanced Absolute Nodal Coordinate Formulation for Efficient Modeling and Analysis of Long Torsion-Free Cable Structures
,”
Appl. Math. Modell.
,
123
, pp.
406
429
.10.1016/j.apm.2023.07.014
29.
Bauchau
,
O. A.
,
Betsch
,
P.
,
Cardona
,
A.
,
Gerstmayr
,
J.
,
Jonker
,
B. J. B.
,
Masarati
,
P.
, and
Sonneville
,
V.
,
2016
, “
Validation of Flexible Multibody Dynamics Beam Formulations Using Benchmark Problems
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
29
48
.10.1007/s11044-016-9514-y
30.
Shigley, J. E., 2011, Shigley's Mechanical Engineering Design, Tata McGraw-Hill, New Delhi.
31.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
221
(
2
), pp.
219
231
.10.1243/1464419JMBD86
You do not currently have access to this content.