The present research intends to investigate the characteristics of the periodicity ratio and its implementation in analyzing the nonlinear behavior of dynamic systems governed by second-order differential equations. Numerical analyses on the nonlinear dynamic systems with employment of the periodicity ratio for diagnosing chaotic, regular, and irregular behaviors of dynamic systems are performed. To characterize the approach with periodicity ratio in distinguishing different behaviors of the nonlinear dynamic systems, a comparison of periodicity ratio with the widely used Lyapunov exponent in numerically assessing the responses of nonlinear dynamic systems is presented.

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1988,
Nonlinear Dynamics
,
American Society of Mechanical Engineers
,
New York
.
2.
Strogatz
,
S. H.
, 2000,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Westview Press
,
Cambridge, MA
.
3.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S.
, and
Young
,
D. H.
, 1990,
Vibration Problems in Engineering
,
Wiley
,
New York
.
4.
Lakshmanan
,
M.
, and
Rajasekar
,
S.
, 2003,
Nonlinear Dynamics: Integrability, Chaos, and Patterns
,
Springer
,
New York
.
5.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
6.
Rong
,
H.
,
Meng
,
G.
,
Wang
,
X.
,
Xu
,
W.
, and
Fang
,
T.
, 2002, “
Invariant Measures and Lyapunov-Exponents for Stochastic Mathieu System
,”
Nonlinear Dyn.
0924-090X,
30
, pp.
313
321
.
7.
Shahverdian
,
A. Yu.
, and
Apkarian
,
A. V.
, 2007, “
A Difference Characteristic for One-Dimensional Deterministic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
3
), pp.
233
242
.
8.
Terzic
,
B.
, and
Kandrup
,
H. E.
, 2003, “
Semi-Analytic Estimates of Lyapunov Exponents in Lower-Dimensional Systems
,”
Phys. Lett. A
0375-9601,
311
,
165
171
.
9.
Lu
,
J.
,
Yang
,
G.
,
Oh
,
H.
, and
Luo
,
A. J.
, 2005, “
Computing Lyapunov-Exponents of Continuous Dynamical Systems: Method of Lyapunov Vectors
,”
Chaos, Solitons Fractals
0960-0779,
23
, pp.
1879
1892
.
10.
He
,
D.
,
Xu
,
J.
,
Chen
,
Y.
, and
Tan
,
N.
, 1999, “
A Simple Method for the Computation of the Conditional Lyapunov Exponents
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
4
(
2
), pp.
113
117
.
11.
Dai
,
L.
, and
Singh
,
M. C.
, 1997, “
Diagnosis of Periodic and Chaotic Responses in Vibratory Systems
,”
J. Acoust. Soc. Am.
0001-4966,
102
(
6
), pp.
3361
3371
.
12.
Lu
,
C.
, 2007, “
Chaos of a Parametrically Excited Undamped Pendulum
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
1
), pp.
45
57
.
13.
Yamapi
,
R.
, and
Aziz-Alaoui
,
M. A.
, 2007, “
Vibration Analysis and Bifurcations in the Self-Sustained Electromechanical System With Multiple Functions
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
8
), pp.
1534
1549
.
14.
Lazzouni
,
S. A.
,
Bowong
,
S.
,
Kakmeni
,
F. M. M.
,
Cherki
,
B.
, and
Ghouali
,
N.
, 2007, “
Chaos Control Using Small-Amplitude Damping Signals of the Extended Duffing Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
5
), pp.
804
813
.
15.
Baker
,
G. L.
, and
Gollub
,
J. P.
, 1991,
Chaotic Dynamics: An Introduction
,
Cambridge University Press
,
Cambridge, England
.
16.
Dai
,
L.
, and
Singh
,
M. C.
, 2003, “
A New Approach With Piecewise-Constant Arguments to Approximate and Numerical Solutions of Oscillatory Problems
,”
J. Sound Vib.
0022-460X,
263
(
3
), pp.
535
548
.
17.
Ueda
,
Y.
, 1980, “
Steady Motions Exhibited by Duffing’s Equations: A Picture Book of Regular and Chaotic Motions
,” in
New Approaches to Nonlinear Problems in Dynamics
,
P. J.
Holmes
, ed.,
SIAM
,
Philadelphia
, pp.
311
322
.
18.
Dai
,
L.
, and
Singh
,
M. C.
, 1998, “
Periodic, Quasiperiodic and Chaotic Behavior of a Driven Froude Pendulum
,”
Int. J. Non-Linear Mech.
0020-7462,
33
(
6
), pp.
947
965
.
You do not currently have access to this content.