Fractional calculus is a mathematical paradigm that has been increasingly adopted to describe the dynamics of systems with hereditary characteristics, or that reflect an average of a large population of microelements. In this line of thought, this article analyzes the statistical dynamics of a system composed of a large number of micromechanical masses with backlash and impacts. We conclude that, while individual dynamics of each element has an integer-order nature, the global dynamics reveal the existence of both integer and fractional dynamics.

1.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order
,
Academic
,
New York, USA
.
2.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
, 1993,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science
,
Amsterdam, The Netherlands
.
3.
Miller
,
K. S.
, and
Ross
,
B.
, 1993,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
4.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego
.
5.
Oustaloup
,
A.
, 1991,
La Commande CRONE: Commande Robuste d’Ordre Non Entier
,
Hermes
,
Paris
.
6.
Le Méhauté
,
A.
, 1991,
Fractal Geometries: Theory and Applications
,
Penton
,
London
.
7.
Machado
,
J. A. T.
, 1997, “
Analysis and Design of Fractional-Order Digital Control Systems
,”
Syst. Anal. Model. Simul.
0232-9298,
27
, pp.
107
122
.
8.
Podlubny
,
I.
, 1999, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
1
), pp.
208
213
.
9.
Westerlund
,
S.
, 2002,
Dead Matter Has Memory
,
Causal Consulting
,
Kalmar
.
10.
Chen
,
Y. Q.
, and
Vinagre
,
B. M.
, 2003, “
A New IIR-Type Digital Fractional Order Differentiator
,”
Signal Process.
0165-1684,
83
(
11
), pp.
2359
2365
.
11.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
, 2006, “
Fractional Dynamics of Systems With Long-Range Interaction
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
11
(
8
), pp.
885
898
.
12.
Korabel
,
N.
,
Zaslavsky
,
G. M.
, and
Tarasov
,
V. E.
, 2007, “
Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
8
), pp.
1405
1417
.
13.
Tarasov
,
V. E.
, and
Zaslavsky
,
G. M.
, “
Conservation Laws and Hamilton’s Equations for Systems With Long-Range Interaction and Memory
,” Commun. Nonlinear Sci. Numer. Simul., in Press.
14.
Marcos
,
M. G.
,
Duarte
,
F. B. M.
, and
Machado
,
J. A. T.
, “
Fractional Dynamics in the Trajectory Control of Redundant Manipulators
,” Commun. Nonlinear Sci. Numer. Simul., in press.
15.
Nigmatullin
,
R. R.
, 1992, “
A Fractional Integral and Its Physical Interpretation
,”
Theor. Math. Phys.
0040-5779,
90
(
3
), pp.
242
251
.
16.
Tatom
,
F. B.
, 1995, “
The Relationship Between Fractional Calculus and Fractals
,”
Fractals
0218-348X,
3
(
1
), pp.
217
229
.
17.
Adda
,
F. B.
, 1997, “
Geometric Interpretation of the Fractional Derivative
,”
J. Fractional Calculus
0918-5402,
11
, pp.
21
52
.
18.
Podlubny
,
I.
, 2002, “
Geometrical and Physical Interpretation of Fractional Integration and Fractional Differentiation
,”
J. Fractional Calculus
0918-5402,
5
(
4
), pp.
357
366
.
19.
Machado
,
J. A. T.
, 2003, “
A Probabilistic Interpretation of the Fractional-order Differentiation
,”
Fractional Calculus Appl. Anal.
1311-0454,
6
(
1
), pp.
73
80
.
20.
Stanislavsky
,
A. A.
, 2004, “
Probabilistic Interpretation of the Integral of Fractional-Order
,”
Theor. Math. Phys.
0040-5779,
138
(
3
), pp.
418
431
.
21.
Grigolini
,
P.
,
Rocco
,
A.
, and
West
,
B. J.
, 1999, “
Fractional Calculus as a Macroscopic Manifestation of Randomness
,”
Phys. Rev. E
1063-651X,
59
(
3
), pp.
2603
2613
.
22.
Mainardi
,
F.
,
Raberto
,
M.
,
Gorenflo
,
R.
, and
Scalas
,
E.
, 2000, “
Fractional Calculus and Continuous-Time Finance II: The Waiting-Time Distribution
,”
Physica A
0378-4371,
287
, pp.
468
481
.
23.
Zaslavsky
,
G. M.
, 2002, “
Chaos, Fractional Kinetics, and Anomalous Transport
,”
Phys. Rep.
0370-1573,
371
, pp.
461
580
.
24.
Gorenflo
,
R.
,
Mainardi
,
F.
,
Moretti
,
D.
,
Pagnini
,
G.
, and
Paradisi
,
P.
, 2002, “
Fractional Diffusion: Probability Distributions and Random Walk Models
,”
Physica A
0378-4371,
305
(
1–2
), pp.
106
112
.
25.
Leszczynski
,
J. S.
, 2003, “
Fractional Calculus in Application to Mechanics of Multiparticle Contacts
,”
CMM-2003—Computer Methods in Mechanics
,
Gliwice, Poland
.
26.
Chatterjee
,
A.
, 2005, “
Statistical Origins of Fractional Derivatives in Viscoelasticity
,”
J. Sound Vib.
0022-460X,
284
(
3–5
), pp.
1239
1245
.
27.
Meerschaert
,
M. M.
, 2006, “
Fractional Calculus Models in Finance
,”
International Symposium on Fractional Calculus
,
Otago University
,
New Zealand
.
28.
Nigmatullin
,
R. R.
,
Arbuzov
,
A. A.
,
Salehli
,
F.
,
Giz
,
A.
,
Bayrak
,
I.
, and
Catalgil-Giz
,
H.
, 2007, “
The First Experimental Confirmation of the Fractional Kinetics Containing the Complex-Power-Law Exponents: Dielectric Measurements of Polymerization Reactions
,”
Physica B
0921-4526,
388
, pp.
418
434
.
29.
Azenha
,
A.
, and
Machado
,
J. A. T.
, 1998, “
On the Describing Function Method and the Prediction of Limit Cycles in Nonlinear Dynamical Systems
,”
Systems Analysis-Modelling-Simulation
,
Gordon and Breach
,
New York
,
33
, pp.
307
320
.
30.
Barbosa
,
R. S.
, and
Machado
,
J. A. T.
, 2002, “
Describing Function Analysis of Systems with Impacts and Backlash
,”
Nonlinear Dyn.
0924-090X,
29
(
1–4
), pp.
235
250
.
31.
Machado
,
J. A. T.
, and
Galhano
,
A. F.
, 1995, “
Evaluation of Manipulator Direct Dynamics using Customized Runge–Kutta Methods
,”
Systems Analysis-Modelling-Simulation
,
Gordon and Breach
,
New York
, Vol.
17
, pp.
229
239
.
You do not currently have access to this content.