Fractional calculus is a mathematical paradigm that has been increasingly adopted to describe the dynamics of systems with hereditary characteristics, or that reflect an average of a large population of microelements. In this line of thought, this article analyzes the statistical dynamics of a system composed of a large number of micromechanical masses with backlash and impacts. We conclude that, while individual dynamics of each element has an integer-order nature, the global dynamics reveal the existence of both integer and fractional dynamics.
Issue Section:
Modeling
1.
Oldham
, K. B.
, and Spanier
, J.
, 1974, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order
, Academic
, New York, USA
.2.
Samko
, S. G.
, Kilbas
, A. A.
, and Marichev
, O. I.
, 1993, Fractional Integrals and Derivatives: Theory and Applications
, Gordon and Breach Science
, Amsterdam, The Netherlands
.3.
Miller
, K. S.
, and Ross
, B.
, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
, Wiley
, New York
.4.
Podlubny
, I.
, 1999, Fractional Differential Equations
, Academic
, San Diego
.5.
Oustaloup
, A.
, 1991, La Commande CRONE: Commande Robuste d’Ordre Non Entier
, Hermes
, Paris
.6.
Le Méhauté
, A.
, 1991, Fractal Geometries: Theory and Applications
, Penton
, London
.7.
Machado
, J. A. T.
, 1997, “Analysis and Design of Fractional-Order Digital Control Systems
,” Syst. Anal. Model. Simul.
0232-9298, 27
, pp. 107
–122
.8.
Podlubny
, I.
, 1999, “Fractional-Order Systems and PIλDμ-Controllers
,” IEEE Trans. Autom. Control
0018-9286, 44
(1
), pp. 208
–213
.9.
Westerlund
, S.
, 2002, Dead Matter Has Memory
, Causal Consulting
, Kalmar
.10.
Chen
, Y. Q.
, and Vinagre
, B. M.
, 2003, “A New IIR-Type Digital Fractional Order Differentiator
,” Signal Process.
0165-1684, 83
(11
), pp. 2359
–2365
.11.
Tarasov
, V. E.
, and Zaslavsky
, G. M.
, 2006, “Fractional Dynamics of Systems With Long-Range Interaction
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 11
(8
), pp. 885
–898
.12.
Korabel
, N.
, Zaslavsky
, G. M.
, and Tarasov
, V. E.
, 2007, “Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(8
), pp. 1405
–1417
.13.
Tarasov
, V. E.
, and Zaslavsky
, G. M.
, “Conservation Laws and Hamilton’s Equations for Systems With Long-Range Interaction and Memory
,” Commun. Nonlinear Sci. Numer. Simul., in Press.14.
Marcos
, M. G.
, Duarte
, F. B. M.
, and Machado
, J. A. T.
, “Fractional Dynamics in the Trajectory Control of Redundant Manipulators
,” Commun. Nonlinear Sci. Numer. Simul., in press.15.
Nigmatullin
, R. R.
, 1992, “A Fractional Integral and Its Physical Interpretation
,” Theor. Math. Phys.
0040-5779, 90
(3
), pp. 242
–251
.16.
Tatom
, F. B.
, 1995, “The Relationship Between Fractional Calculus and Fractals
,” Fractals
0218-348X, 3
(1
), pp. 217
–229
.17.
Adda
, F. B.
, 1997, “Geometric Interpretation of the Fractional Derivative
,” J. Fractional Calculus
0918-5402, 11
, pp. 21
–52
.18.
Podlubny
, I.
, 2002, “Geometrical and Physical Interpretation of Fractional Integration and Fractional Differentiation
,” J. Fractional Calculus
0918-5402, 5
(4
), pp. 357
–366
.19.
Machado
, J. A. T.
, 2003, “A Probabilistic Interpretation of the Fractional-order Differentiation
,” Fractional Calculus Appl. Anal.
1311-0454, 6
(1
), pp. 73
–80
.20.
Stanislavsky
, A. A.
, 2004, “Probabilistic Interpretation of the Integral of Fractional-Order
,” Theor. Math. Phys.
0040-5779, 138
(3
), pp. 418
–431
.21.
Grigolini
, P.
, Rocco
, A.
, and West
, B. J.
, 1999, “Fractional Calculus as a Macroscopic Manifestation of Randomness
,” Phys. Rev. E
1063-651X, 59
(3
), pp. 2603
–2613
.22.
Mainardi
, F.
, Raberto
, M.
, Gorenflo
, R.
, and Scalas
, E.
, 2000, “Fractional Calculus and Continuous-Time Finance II: The Waiting-Time Distribution
,” Physica A
0378-4371, 287
, pp. 468
–481
.23.
Zaslavsky
, G. M.
, 2002, “Chaos, Fractional Kinetics, and Anomalous Transport
,” Phys. Rep.
0370-1573, 371
, pp. 461
–580
.24.
Gorenflo
, R.
, Mainardi
, F.
, Moretti
, D.
, Pagnini
, G.
, and Paradisi
, P.
, 2002, “Fractional Diffusion: Probability Distributions and Random Walk Models
,” Physica A
0378-4371, 305
(1–2
), pp. 106
–112
.25.
Leszczynski
, J. S.
, 2003, “Fractional Calculus in Application to Mechanics of Multiparticle Contacts
,” CMM-2003—Computer Methods in Mechanics
, Gliwice, Poland
.26.
Chatterjee
, A.
, 2005, “Statistical Origins of Fractional Derivatives in Viscoelasticity
,” J. Sound Vib.
0022-460X, 284
(3–5
), pp. 1239
–1245
.27.
Meerschaert
, M. M.
, 2006, “Fractional Calculus Models in Finance
,” International Symposium on Fractional Calculus
, Otago University
, New Zealand
.28.
Nigmatullin
, R. R.
, Arbuzov
, A. A.
, Salehli
, F.
, Giz
, A.
, Bayrak
, I.
, and Catalgil-Giz
, H.
, 2007, “The First Experimental Confirmation of the Fractional Kinetics Containing the Complex-Power-Law Exponents: Dielectric Measurements of Polymerization Reactions
,” Physica B
0921-4526, 388
, pp. 418
–434
.29.
Azenha
, A.
, and Machado
, J. A. T.
, 1998, “On the Describing Function Method and the Prediction of Limit Cycles in Nonlinear Dynamical Systems
,” Systems Analysis-Modelling-Simulation
, Gordon and Breach
, New York
, 33
, pp. 307
–320
.30.
Barbosa
, R. S.
, and Machado
, J. A. T.
, 2002, “Describing Function Analysis of Systems with Impacts and Backlash
,” Nonlinear Dyn.
0924-090X, 29
(1–4
), pp. 235
–250
.31.
Machado
, J. A. T.
, and Galhano
, A. F.
, 1995, “Evaluation of Manipulator Direct Dynamics using Customized Runge–Kutta Methods
,” Systems Analysis-Modelling-Simulation
, Gordon and Breach
, New York
, Vol. 17
, pp. 229
–239
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.