In this paper, we investigate the dynamic behavior of road traffic flows and study if chaotic phenomena exist in a traffic flow dynamic system. Two discrete dynamic models are proposed, which are derived from Del Castillo and Benitez’s exponential curve model and maximum sensitivity curve model. Both models have two parameters, which are the ratio of free flow and spacing average speed and the ratio of the absolute value of kinematic wave speed at jam density and the free flow speed. Chaos is found in the two models when the two values increase separately. The Lyapunov exponents and fractal dimension were used to examine the characters of the chaos in the two models.
Issue Section:
Modeling
1.
Disbro
, J. E.
, and Frame
, M.
, 1989, “Traffic Flow Theory and Chaotic Behavior
,” Transp. Res. Rec.
0361-1981, 1225
, pp. 109
–115
.2.
Dendrinos
, D. S.
, 1994, “Traffic-Flow Dynamics: A Search for Chaos, Chaos, Solitons Fractals
,” Comput. Speech Lang.
0885-2308, 4
(4
), pp. 605
–617
.3.
Zhang
, X.
, and Jarrett
, D. F.
, 1998, “Chaos in a Dynamic Model of Traffic Flows in an Origin-Destination Network
,” Chaos
1054-1500, 8
(2
), pp. 503
–513
.4.
Addison
, P. S.
, and Low
, D. J.
, 1996, “Order and Chaos in the Dynamics of Vehicle Platoons
,” Traffic Eng. Control
0041-0683, 3
, pp. 456
–459
.5.
Addison
, P. S.
, and Low
, D. J.
, 1998, “A Novel Nonlinear Car-Following Model
,” Chaos
1054-1500, 8
(4
), pp. 791
–799
.6.
van Zuylen
, H. J.
, van Geenhuizen
, P. S.
, and Nijkamp
, P.
, 1999, “(Un)predictability in Traffic and Transport Decision Making
,” Transp. Res. Rec.
0361-1981, 1685
, pp. 21
–28
.7.
Safanov
, L. A.
, Tomer
, E.
, Strygin
, V. V.
, Ashkenazy
, Y.
, and Havlin
, S.
, 2002, “Delay-Induced Chaos With Multi-Fractal Attractor in a Traffic Flow Model
,” Europhys. Lett.
0295-5075, 57
(2
), pp. 151
–157
.8.
Nair
, A. S.
, Liu
, J.
, Rilett
, L.
, and Gupta
, S.
, 2001, “Non-Linear Analysis of Traffic Flow
,” IEEE Intelligent Transportation Systems Conference Proceedings
, Oakland
, USA
, pp. 681
–685
.9.
Weidlich
, W.
, 2000, Socio Dynamics: A Systematic Approach to Mathematical Modeling in the Social Sciences
, Harwood Academic
, Amsterdam
.10.
Li
, K. P.
, and Gao
, Z. Y.
, 2004, “Nonlinear Dynamics Analysis of Traffic Time Series
,” Mod. Phys. Lett. B
0217-9849, 18B
(26
), pp. 1395
–1402
.11.
Del Castillo
, J. M.
, and Benitez
, F. G.
, 1995, “On the Functional Form of the Speed Density Relationship I: General Theory
,” Transp. Res., Part B: Methodol.
0191-2615, 29B
(4
), pp. 373
–389
..12.
Lighthill
, M. J.
, and Whitham
, G. B.
, 1955, “On Kinematic Waves. I: Flow Movement in Long Rives II: A Theory of Traffic Flow on Long Crowded Roads
,” Proc. R. Soc. London, Ser. A
1364-5021, 229
, pp. 281
–345
.13.
Richards
, P. I.
, 1956, “Shock Waves on the Highway
,” Oper. Res.
0030-364X, 4
, pp. 42
–51
.14.
Del Castillo
, J. M.
, and Benitez
, F. G.
, 1995, “On the Functional Form of the Speed Density Relationship II: Empirical Investigation
,” Transp. Res., Part B: Methodol.
0191-2615, 29B
(4
), pp. 391
–406
.15.
Parker
, T. S.
, and Chua
, L. O.
, 1989, Practical Numerical Algorithms for Chaotic System
, Springer-Verla
, Berlin
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.