In this study, the nonlinear free vibration of conservative two degrees of freedom systems is analyzed using the homotopy analysis method (HAM). The mathematical model of such systems is described by two second-order coupled differential equations with cubic nonlinearities. First, novel approximate analytical solutions for displacements and frequencies are established using HAM. Then, the homotopy Padé technique is applied to accelerate the convergence rate of the solutions. Comparison between the obtained results and those available in the literature shows that the first-order approximation of homotopy Padé technique leads to accurate solutions with a maximum relative error less than 0.068 percent for all the considered cases.

1.
Dimarogonas
,
A. D.
, and
Haddad
,
S.
, 1992,
Vibration for Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Cveticanin
,
L.
, 1998, “
Some Particular Solutions Which Describe the Motion of the Rotor
,”
J. Sound Vib.
0022-460X,
212
, pp.
173
178
.
3.
Mahmoud
,
G. M.
, and
Aly
,
S. A. H.
, 2000, “
On Periodic Solutions of Parametrically Excited Complex Non-Linear Dynamical Systems
,”
Physica A
0378-4371,
278
, pp.
390
404
.
4.
Cveticanin
,
L.
, 2001, “
Analytic Approach for the Solution of the Complex-Valued Strong Non-Linear Differential Equation of Duffing Type
,”
Physica A
0378-4371,
297
, pp.
348
360
.
5.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1989, “
Modal Interactions in Dynamical and Structural Systems
,”
Appl. Mech. Rev.
0003-6900,
42
, pp.
175
201
.
6.
Tse
,
F. S.
,
Morse
,
I. E.
, and
Hinkle
,
R. T.
, 1978,
Mechanical Vibrations: Theory And applications
,
Allyn and Bacon Inc.
,
Boston
.
7.
Ladygina
,
Y. V.
, and
Manevich
,
A. I.
, 1993, “
Free Oscillations of a Nonlinear Cubic System With Two Degrees of Freedom and Close Natural Frequencies
,”
J. Appl. Math. Mech.
0021-8928,
57
, pp.
257
266
.
8.
Cveticanin
,
L.
, 2002, “
The Motion of a Two-Mass System With Non-Linear Connection
,”
J. Sound Vib.
0022-460X,
252
, pp.
361
369
.
9.
Cveticanin
,
L.
, 2001, “
Vibrations of a Coupled Two-Degree-of-Freedom System
,”
J. Sound Vib.
0022-460X,
247
, pp.
279
292
.
10.
Vakakis
,
A. F.
, and
Rand
,
R. H.
, 2004, “
Non-Linear Dynamics of a System of Coupled Oscillators With Essential Stiffness Nonlinearities
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1079
1091
.
11.
Lai
,
S. K.
, and
Lim
,
C. W.
, 2007, “
Nonlinear Vibration of a Two-Mass System With Nonlinear Stiffnesses
,”
Nonlinear Dyn.
0924-090X,
49
, pp.
233
249
.
12.
Qaisi
,
M. I.
, and
Kilani
,
A. W.
, 2000, “
A Power-Series Solution for a Strongly Non-Linear Two-Degree-of-Freedom System
,”
J. Sound Vib.
0022-460X,
233
, pp.
489
494
.
13.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
14.
Mickens
,
R. E.
, 1996,
Oscillations in Planar Dynamic Systems
,
World Scientific
,
Singapore
.
15.
Bellman
,
R.
, 1970,
Methods of Nonlinear Analysis
,
Academic
,
New York
.
16.
Gelb
,
A.
, and
Vander Velde
,
W. E.
, 1968,
Multiple Input Describing Functions and Nonlinear System Design
,
McGraw-Hill
,
New York
.
17.
Kaplan
,
W.
, 1958,
Ordinary Differential Equations
,
Addison-Wesley
,
Reading, MA
.
18.
Qaisi
,
M. I.
, 1996, “
A Power Series Approach for the Study of Periodic Motion
,”
J. Sound Vib.
0022-460X,
196
, pp.
401
406
.
19.
Wu
,
B. S.
,
Sun
,
W. P.
, and
Lim
,
C. W.
, 2006, “
An Analytical Approximate Technique for a Class of Strongly Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
766
774
.
20.
Liao
,
S. J.
, 1992, “
On the Proposed Homotopy Analysis Techniques for Nonlinear Problems and Its Application
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
21.
Liao
,
S. J.
, 2003,
Beyond Perturbation: Introduction to Homotopy Analysis Method
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
22.
Liao
,
S. J.
, and
Cheung
,
K. F.
, 2003, “
Homotopy Analysis of Nonlinear Progressive Waves in Deep Water
,”
J. Eng. Math.
0022-0833,
45
, pp.
105
116
.
23.
Liao
,
S. J.
, 2008, “
Notes on the Homotopy Analysis Method: Some Definitions and Theorems
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
4
), pp.
983
997
.
24.
Pirbodaghi
,
T.
,
Ahmadian
,
M. T.
, and
Fesanghary
,
M.
, 2009, “
On the Homotopy Analysis Method for Non-Linear Vibration of Beams
,”
Mech. Res. Commun.
0093-6413,
36
, pp.
143
148
.
25.
Saff
,
E. B.
, and
Varga
,
R. S.
, 1977,
Padé and Rational Approximation
,
Academic
,
New York
.
You do not currently have access to this content.