Forced Lorenz system, important in modeling of monsoonlike phenomena, is analyzed for the existence of heteroclinic orbit. This is done in the light of the suggested new mechanism for the onset of chaos by Magnitskii and Sidorov (2006, “Finding Homoclinic and Heteroclinic Contours of Singular Points of Nonlinear Systems of Ordinary Differential Equations,” Diff. Eq., 39, pp. 1593–1602), where heteroclinic orbits plays important and dominant roles. The analysis is performed based on the theory laid down by Shilnikov. An analytic expression in the form of uniformly convergent series is obtained. The same orbit is also obtained numerically by a technique enunciated by Magnitskii and Sidorov, reproducing the necessary important features.

1.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1990,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
2.
Sparrow
,
C.
, 1982,
The Lorenz Equation: Bifurcation, Chaos and Strange Attractors
,
Springer-Verlag
,
New York
.
3.
Zhou
,
T.
,
Chen
,
G.
, and
Celikovsky
,
S.
, 2005, “
Shilnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems
,”
Nonlinear Dyn.
0924-090X,
39
, pp.
319
334
.
4.
Medrano-T
,
R. O.
,
Baptista
,
M. S.
, and
Caldas
,
I. L.
, 2005, “
Basic Structures of the Shilnikov Homoclinic Bifurcation Scenario
,”
Chaos
1054-1500,
15
, p.
033112
.
5.
Robinson
,
C.
, 1989, “
Homoclinic Bifurcation to a Transitive Attractor of Lorenz Type
,”
Nonlinearity
0951-7715,
2
, pp.
495
518
.
6.
Mancho
,
A. M.
,
Small
,
D.
,
Wiggins
,
S.
, and
Ide
,
K.
, 2003, “
Computation of Stable and Unstable Manifolds of Hyperbolic Trajectories in Two-Dimensional, Aperiodically Time-Dependent Vector Fields
,”
Physica D
0167-2789,
182
, pp.
188
222
.
7.
Wiggins
,
S.
, 1988,
Global Bifurcation and Chaos
,
Springer-Verlag
,
New York
.
8.
Mittal
,
A. K.
,
Dwivedi
,
S.
, and
Pandey
,
A. C.
, 2005, “
Bifurcation Analysis of a Paradigmatic Model of Monsoon Prediction
,”
Nonlinear Processes Geophys.
1023-5809,
12
, pp.
707
715
.
9.
Magnitskii
,
N. A.
, and
Sidorov
,
S. V.
, 2003, “
Finding Homoclinic and Heteroclinic Contours of Singular Points of Nonlinear Systems of Ordinary Differential Equations
,”
Diff. Eq.
0012-2661,
39
, pp.
1593
1602
.
10.
Silva
,
C. P.
, 1993, “
Shilnikov Theorem—A Tutorial
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
1549-8328,
40
, pp.
675
682
.
11.
Awrejcewicz
,
J.
, and
Krysko
,
V. A.
, 2006,
Introduction to Asymptotic Methods
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
12.
Awrejcewicz
,
J.
, and
Holicke
,
M. M.
, 2007,
Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods
, Vol.
60
(
World Scientific Series on Nonlinear Science-Series A
),
World Scientific
,
Singapore
.
13.
Lorenz
,
E. N.
, 1963, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
0022-4928,
20
, pp.
130
141
.
You do not currently have access to this content.