Skip Nav Destination
Issues
November 2016
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Guest Editorial
Multibody Systems History of ADAMS
J. Comput. Nonlinear Dynam. November 2016, 11(6): 060301.
doi: https://doi.org/10.1115/1.4034296
History of Multibody Dynamics in the U.S.
J. Comput. Nonlinear Dynam. November 2016, 11(6): 060302.
doi: https://doi.org/10.1115/1.4034308
An Important Chapter in the History of Multibody System Dynamics
J. Comput. Nonlinear Dynam. November 2016, 11(6): 060303.
doi: https://doi.org/10.1115/1.4034295
Topics:
Dynamics (Mechanics)
,
Multibody systems
,
Computer software
Research Papers
An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061001.
doi: https://doi.org/10.1115/1.4032574
An Efficient Operational Matrix Technique for Multidimensional Variable-Order Time Fractional Diffusion Equations
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061002.
doi: https://doi.org/10.1115/1.4033723
Topics:
Diffusion (Physics)
,
Algorithms
,
Polynomials
Modeling the Abrupt Buckling Transition in dsDNA During Supercoiling
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061003.
doi: https://doi.org/10.1115/1.4033308
Topics:
Buckling
,
DNA
,
Dynamics (Mechanics)
,
Simulation
,
Deformation
Numerical Computation of a Fractional Model of Differential-Difference Equation
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061004.
doi: https://doi.org/10.1115/1.4033899
Topics:
Algorithms
,
Carbon nanotubes
,
Computation
,
Flow (Dynamics)
,
Heat conduction
,
Nanoscale phenomena
,
Biology
,
Chemistry
,
Physics
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Parallel Computation and Deployment Simulation
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061005.
doi: https://doi.org/10.1115/1.4033657
Topics:
Cables
,
Computation
,
Dynamics (Mechanics)
,
Multibody systems
,
Simulation
,
Trusses (Building)
,
Finite element analysis
,
Satellites
Dissipativity-Based Reliable Sampled-Data Control With Nonlinear Actuator Faults
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061006.
doi: https://doi.org/10.1115/1.4034047
Topics:
Actuators
,
Closed loop systems
,
Control equipment
,
Design
,
Delays
Prediction and Recovery of Aircraft Unstable Nonlinear Phenomena Using Bifurcation Analysis and Backstepping Method
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061007.
doi: https://doi.org/10.1115/1.4034049
Topics:
Aircraft
,
Bifurcation
,
Control equipment
,
Flight
,
Aerodynamics
,
Stability
,
Design
,
Uncertainty
A Novel Method to Solve a Class of Distributed Optimal Control Problems Using Bezier Curves
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061008.
doi: https://doi.org/10.1115/1.4033755
Topics:
Approximation
,
Optimal control
,
Polynomials
,
Algebra
Bifurcation Forecasting for Large Dimensional Oscillatory Systems: Forecasting Flutter Using Gust Responses
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061009.
doi: https://doi.org/10.1115/1.4033920
Topics:
Bifurcation
Chaotic Behavior and Its Control in a Fractional-Order Energy Demand–Supply System
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061010.
doi: https://doi.org/10.1115/1.4034048
Topics:
Algorithms
,
Attractors
,
Chaos
,
Computer simulation
,
Energy resources
,
Equilibrium (Physics)
,
Feedback
,
China
Fuel Consumption Optimization of Heavy-Duty Vehicles With Grade, Wind, and Traffic Information
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061011.
doi: https://doi.org/10.1115/1.4033895
Topics:
Fuel consumption
,
Optimization
,
Traffic
,
Gears
,
Construction equipment
Analysis of a Two-Dimensional Aeroelastic System Using the Differential Transform Method
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061012.
doi: https://doi.org/10.1115/1.4034123
Topics:
Airfoils
,
Approximation
,
Bifurcation
,
Chaos
,
Flow (Dynamics)
,
Flutter (Aerodynamics)
,
Stiffness
,
Oscillations
Improved Self-Tuning Fuzzy Proportional–Integral–Derivative Versus Fuzzy-Adaptive Proportional–Integral–Derivative for Speed Control of Nonlinear Hybrid Electric Vehicles
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061013.
doi: https://doi.org/10.1115/1.4033685
Topics:
Control equipment
,
Vehicles
Wavelets Galerkin Method for the Fractional Subdiffusion Equation
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061014.
doi: https://doi.org/10.1115/1.4034391
Topics:
Algebra
,
Algorithms
,
Boundary-value problems
,
Diffusion (Physics)
,
Errors
,
Galerkin method
,
Linear systems
,
Wavelets
,
Numerical analysis
Classification of Solutions to the Plane Extremal Distance Problem for Bodies With Smooth Boundaries
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061015.
doi: https://doi.org/10.1115/1.4034393
Topics:
Bifurcation
,
Manifolds
Nonlinear System Identification Technique for a Base-Excited Structure Based on Modal Space Formulation
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061016.
doi: https://doi.org/10.1115/1.4034394
Topics:
Displacement
,
Excitation
,
Nonlinear systems
,
Stiffness
,
Mode shapes
Fractional Differential Equations With Dependence on the Caputo–Katugampola Derivative
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061017.
doi: https://doi.org/10.1115/1.4034432
Topics:
Differential equations
,
Theorems (Mathematics)
A Lumped-Parameter Model of Multiscale Dynamics in Steam Supply Systems
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061018.
doi: https://doi.org/10.1115/1.4034491
Topics:
Dynamics (Mechanics)
,
Steam
,
Boilers
,
Pipes
,
Manifolds
,
Flow (Dynamics)
Experimental and Numerical Study on Dynamic Properties of Viscoelastic Microvibration Damper Considering Temperature and Frequency Effects
J. Comput. Nonlinear Dynam. November 2016, 11(6): 061019.
doi: https://doi.org/10.1115/1.4034566
Topics:
Dampers
,
Temperature
,
Displacement
,
Storage
,
Chain
,
Solid models
Book Review
Dynamics: Theory and Application of Kane's Method
J. Comput. Nonlinear Dynam. November 2016, 11(6): 066501.
doi: https://doi.org/10.1115/1.4034731
Topics:
Dynamics (Mechanics)
,
Multibody systems
Email alerts
RSS Feeds
A New Perspective for Scientific Modelling: Sparse Reconstruction-Based Approach for Learning Time-Space Fractional Differential Equations
J. Comput. Nonlinear Dynam (December 2024)
An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations
J. Comput. Nonlinear Dynam (December 2024)