Skip Nav Destination
Issues
October 2011
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Supercavitating Vehicles With Noncylindrical, Nonsymmetric Cavities: Dynamics and Instabilities
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041001.
doi: https://doi.org/10.1115/1.4003408
Topics:
Cavities
,
Vehicles
,
Cavitation
State Dependent Regenerative Effect in Milling Processes
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041002.
doi: https://doi.org/10.1115/1.4003624
Topics:
Bifurcation
,
Cutting
,
Delays
,
Milling
,
Stability
,
Vibration
,
Resonance
,
Machine tools
Parametric Estimation for Delayed Nonlinear Time-Varying Dynamical Systems
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041003.
doi: https://doi.org/10.1115/1.4003626
Topics:
Algorithms
,
Dynamic systems
,
Optimization
,
Pendulums
,
Algebra
,
Errors
,
Time-varying systems
Geometrically Exact Kirchhoff Beam Theory: Application to Cable Dynamics
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041004.
doi: https://doi.org/10.1115/1.4003625
Efficient Targeted Energy Transfer With Parallel Nonlinear Energy Sinks: Theory and Experiments
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041005.
doi: https://doi.org/10.1115/1.4003687
Topics:
Computer simulation
,
Energy transformation
,
Engineering prototypes
,
Excitation
,
Resonance
,
Stability
,
Stiffness
,
Design
,
Linear systems
,
Civil engineering
Study on the Identification of Experimental Chaotic Vibration Signal for Nonlinear Vibration Isolation System
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041006.
doi: https://doi.org/10.1115/1.4003805
Topics:
Chaos
,
Nonlinear vibration
,
Signals
,
Vibration
,
Wavelets
,
Attractors
,
Time series
,
Artificial neural networks
,
Excitation
On the Use of the Subharmonic Resonance as a Method for Filtration
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041007.
doi: https://doi.org/10.1115/1.4003031
Topics:
Bifurcation
,
Excitation
,
Filters
,
Filtration
,
Resonance
,
Stability
,
Frequency response
,
Deflection
,
Mode shapes
,
Hardening
Explicit Numerical Methods for Solving Stiff Dynamical Systems
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041008.
doi: https://doi.org/10.1115/1.4003706
Topics:
Dynamic systems
,
Numerical analysis
,
Runge-Kutta methods
Influence of Local Material Properties on the Nonlinear Dynamic Behavior of an Atomic Force Microscope Probe
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041009.
doi: https://doi.org/10.1115/1.4003732
Topics:
Atomic force microscopy
,
Bifurcation
,
Cantilevers
,
Excitation
,
Probes
,
Separation (Technology)
,
Simulation
,
Materials properties
,
Stiffness
Semialgebraic Regularization of Kinematic Loop Constraints in Multibody System Models
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041010.
doi: https://doi.org/10.1115/1.4002998
Topics:
Kinematics
,
Multibody systems
,
Screws
,
Algorithms
,
Manufacturing
Parameter Identification in Multibody Systems Using Lie Series Solutions and Symbolic Computation
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041011.
doi: https://doi.org/10.1115/1.4003686
Topics:
Computation
,
Equations of motion
,
Multibody systems
,
Optimization
,
Parameter estimation
,
Vehicles
,
Simulation
Equilibrium, Stability, and Dynamics of Rectangular Liquid-Filled Vessels
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041012.
doi: https://doi.org/10.1115/1.4003915
Topics:
Bifurcation
,
Dynamics (Mechanics)
,
Equilibrium (Physics)
,
Stability
,
Vessels
,
Center of mass
Modal Analysis of a Rotating Thin Plate via Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041013.
doi: https://doi.org/10.1115/1.4003975
Topics:
Cantilevers
,
Eigenvalues
,
Modal analysis
,
Mode shapes
,
Deformation
,
Jacobian matrices
,
Plates (structures)
Influence of Modal Coupling on the Nonlinear Dynamics of Augusti’s Model
J. Comput. Nonlinear Dynam. October 2011, 6(4): 041014.
doi: https://doi.org/10.1115/1.4003880
Topics:
Bifurcation
,
Buckling
,
Erosion
,
Stability
,
Stress
,
Nonlinear dynamics
,
Fractals
,
Safety
,
Potential energy
Technical Briefs
A PID Type Constraint Stabilization Method for Numerical Integration of Multibody Systems
J. Comput. Nonlinear Dynam. October 2011, 6(4): 044501.
doi: https://doi.org/10.1115/1.4002688
Topics:
Algebra
,
Control equipment
,
Control theory
,
Equations of motion
,
Errors
,
Multibody systems
,
Simulation
,
Stability
,
Steady state
,
Design
Email alerts
RSS Feeds
Sobolev-Type Nonlinear Hilfer Fractional Differential Equations With Control: Approximate Controllability Exploration
J. Comput. Nonlinear Dynam (November 2024)
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam