A workholding fixture should ensure a stable and precise positioning of the workpiece with respect to the machine tool. This requirement is even more important when modular fixtures are used for the sake of efficiency and reconfigurability. They include standard locating elements, which set the part in a predefined spatial orientation by contacting its datum surfaces. In the computer-based design of a fixture, the layout of locators must be tested against two main sources of problems. Kinematic analysis verifies that any relative motion between the part and the worktable is constrained. Tolerance analysis evaluates the robustness of part orientation with respect to manufacturing errors on datum surfaces. We propose a method to carry out both tests through a common set of geometric parameters of the fixture configuration. These derive from the singular value decomposition of the matrix that represents positioning constraints in screw coordinates. For a poorly designed fixture, the decomposition allows us to find out either unconstrained degrees of freedom of the part or a possible violation of tolerance specifications on machined features due to geometric errors on datum surfaces. In such cases, the analysis provides suggestions to plan the needed corrections to the locating scheme. This paper describes the procedure for kinematic and tolerance analysis and demonstrates its significance on a sample case of fixture design.

1.
Trappey
,
J. C.
, and
Liu
,
C. R.
, 1990, “
A Literature Survey of Fixture-Design Automation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
5
, pp.
240
255
.
2.
Grippo
,
P. M.
,
Thompson
,
B. S.
, and
Gandhi
,
M. V.
, 1988, “
A Review of Flexible Fixturing Systems for Computer Integrated Manufacturing
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
1
(
2
), pp.
124
135
.
3.
Cecil
,
J.
, 2001, “
Computer-Aided Fixture Design: A Review and Future Trends
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
18
, pp.
790
793
.
4.
Gandhi
,
M. V.
, and
Thompson
,
B. S.
, 1986, “
Automated Design of Modular Fixtures for Flexible Manufacturing Systems
,”
J. Manuf. Syst.
0278-6125,
5
(
4
), pp.
243
252
.
5.
Trappey
,
A. J.
, and
Matrubhutam
,
S.
, 1993, “
Fixture Configuration Using Projective Geometry
,”
J. Manuf. Syst.
0278-6125,
12
(
6
), pp.
486
495
.
6.
Whybrew
,
K.
, and
Ngoi
,
B. K. A.
, 1992, “
Computer Aided Design of Modular Fixture Assembly
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
7
, pp.
267
276
.
7.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
8.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
9.
Ohwovoriole
,
M. S.
, and
Roth
,
B.
, 1981, “
An Extension of Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
725
735
.
10.
Chou
,
Y. C.
,
Chandru
,
V.
, and
Barash
,
M. M.
, 1989, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
299
306
.
11.
Lee
,
S. H.
, and
Cutkosky
,
M. R.
, 1991, “
Fixture Planning With Friction
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
320
327
.
12.
Asada
,
H.
, and
By
,
A. B.
, 1985, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
0882-4967,
1
(
2
), pp.
86
94
.
13.
King
,
L. S. B.
, and
Hutter
,
I.
, 1993, “
Theoretical Approach for Generating Optimal Fixturing Locations for Prismatic Workparts in Automated Assembly
,”
J. Manuf. Syst.
0278-6125,
12
(
5
), pp.
409
416
.
14.
De Meter
,
E. C.
, 1993, “
Restraint Analysis of Assembly Work Carriers
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
10
(
4
), pp.
257
265
.
15.
Xiong
,
C. H.
,
Li
,
Y. F.
,
Rong
,
Y. K.
, and
Xiong
,
Y. L.
, 2002, “
Qualitative Analysis and Quantitative Evaluation of Fixturing
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
18
, pp.
335
342
.
16.
Yu
,
K. M.
,
Lam
,
T. W.
, and
Lee
,
A. H. C.
, 2003, “
Immobilization Check for Fixture Design
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
, pp.
499
512
.
17.
Song
,
H.
, and
Rong
,
Y.
, 2005, “
Locating Completeness Evaluation and Revision in Fixture Plan
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
21
, pp.
368
378
.
18.
Boerma
,
J. R.
, and
Kals
,
H. J. J.
, 1989, “
Fixture Design With FIXES: The Automatic Selection of Positioning, Clamping and Support Features for Prismatic Parts
,”
CIRP Ann.
0007-8506,
38
(
1
), pp.
399
402
.
19.
King
,
D. A.
, and
de Sam Lazaro
,
A.
, 1994, “
Process and Tolerance Considerations in the Automated Design of Fixtures
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
480
486
.
20.
Nee
,
A. Y. C.
,
Whybrew
,
K.
, and
Senthilkumar
,
A.
, 1995,
Advanced Fixture Design for FMS
,
Springer
,
London
.
21.
Rong
,
Y.
, and
Bai
,
Y.
, 1996, “
Machining Accuracy Analysis for Computer-Aided Fixture Design Verification
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
289
300
.
22.
Shen
,
Y.
, and
Duffie
,
N. A.
, 1995, “
An Uncertainty Analysis Method for Coordinate Referencing in Manufacturing Systems
,”
ASME J. Eng. Ind.
0022-0817,
117
, pp.
42
48
.
23.
Wu
,
Y.
,
Rong
,
Y.
,
Ma
,
W.
, and
LeClair
,
S. R.
, 1998, “
Automated Modular Fixture Planning: Accuracy, Clamping and Accessibility Analyses
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
14
, pp.
17
26
.
24.
Wang
,
M. Y.
, 1999, “
Automated Fixture Layout Design for 3D Workpieces
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1577
1582
.
25.
Qin
,
G. H.
,
Zhang
,
W. H.
, and
Wan
,
M.
, 2006, “
A Mathematical Approach to Analysis and Optimal Design of a Fixture Locating Scheme
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
29
, pp.
349
359
.
26.
Cai-qi
,
H.
,
Zhong-qin
,
L.
, and
Xin-min
,
L.
, 2006, “
Concept Design of Checking Fixture for Auto-Body Parts Based on Neural Networks
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
30
, pp.
574
577
.
27.
Marin
,
R. A.
, and
Ferreira
,
P. M.
, 2003, “
Analysis of the Influence of Fixture Locator Errors on the Compliance of Work Part Features to Geometric Tolerance Specifications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
609
616
.
28.
Kang
,
Y.
,
Rong
,
Y.
, and
Yang
,
J. C.
, 2003, “
Computer-Aided Fixture Design Verification. Part 2: Tolerance Analysis
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
, pp.
836
841
.
29.
Cheraghi
,
S. H.
,
Liu
,
W.
, and
Weheba
,
G.
, 2005, “
An Examination of the Effect of Variation in Datum Targets on Part Acceptance
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1037
1046
.
30.
Weill
,
R.
,
Darel
,
M.
, and
Laloum
,
M.
, 1991, “
The Influence of Fixture Positioning Errors on the Geometric Accuracy of Mechanical Parts
,”
Proceedings of the CIRP Conference on PE and MS
, pp.
215
225
.
31.
1984,
Fundamentals of Tool Design
,
G.
Hoffman
, ed.,
SME
,
Dearborn, MI
.
32.
Chang
,
C. H.
, 1992, “
Computer Assisted Fixture Planning for Machining Processes
,”
Manuf. Rev.
0896-1611,
5
(
1
), pp.
15
28
.
33.
Golub
,
G. H.
, and
Reinsch
,
C.
, 1971, “
Singular Value Decomposition and Least Squares Solutions
,”
Handbook for Automatic Computation: Linear Algebra
,
J. H.
Wilkinson
and
C.
Reinsch
, eds.,
Springer
,
New York
, pp.
134
151
.
34.
Forsythe
,
G. E.
,
Malcolm
,
M. A.
, and
Moler
,
C. B.
, 1977,
Computer Methods for Mathematical Computations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
35.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1983,
Matrix Computations
,
Johns Hopkins University Press
,
Baltimore, MD
.
36.
Maciejewski
,
A. C.
, and
Klein
,
C. A.
, 1989, “
The Singular Value Decomposition: Computation and Applications to Robotics
,”
Int. J. Robot. Res.
0278-3649,
8
(
6
), pp.
63
79
.
37.
Pierce
,
R. S.
, and
Rosen
,
D.
, 2007, “
Simulation of Mating Between Nonanalytic Surfaces Using a Mathematical Programming Formulation
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
4
), pp.
314
321
.
38.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Kumar
,
R.
, and
Zhou
,
Y.
, 2004, “
Time-Based Competition in Multistage Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology-Review
,”
International Journal of Flexible Manufacturing Systems
,
16
, pp.
11
44
.
You do not currently have access to this content.