Abstract

Reducing the volume of support structures is a critical means for saving materials and budgets of additive manufacturing, and tree structure is an effective topology for this purpose. Although a few articles in literature and commercial software have been devoted to developing tree-supports, those tree-supports are generated based on geometry optimization or user-defined parameters, which cannot guarantee a minimum volume with robust fabrication guarantee. To address this issue, we propose a set of formulas for stably growing the tree-supports with physical constraints based on 3D printing experiments using fused decomposition modelling (FDM) machines, and a volume minimization mechanism using a hybrid of particle swarm optimization (PSO) method and a greedy algorithm. We show that this combination is effective in reducing the volume of tree-supports and the simulations reveal that the volume curves monotonically descent to a constant within a short time, and our experimental results show that the models with the tree-supports can be manufactured stably.

References

1.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2018
, “
Support Structures for Additive Manufacturing: A Review
,”
J. Manuf. Mater. Process
,
2
(
4
), p.
64
.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
3.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
Comput. Aided Des.
,
65
, pp.
1
10
.
4.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Comput. Aided Des.
,
81
, pp.
1
13
.
5.
Orme
,
M. E.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriaux
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100905
.
6.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
Sustainable Design-Oriented Level Set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
.
7.
Wei
,
X. Z.
,
Qiu
,
S. Q.
,
Zhu
,
L.
,
Feng
,
R. L.
,
Tian
,
Y. B.
, and
Xi
,
J. T.
,
2018
, “
Toward Support-Free 3D Printing: A Skeletal Approach for Partitioning Models
,”
IEEE Trans. Vis. Comput. Graph.
,
24
(
10
), pp.
2799
2812
.
8.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graph
,
31
(
6
), p.
129
.
9.
Hu
,
R.
,
Li
,
H.
,
Zhang
,
H.
, and
Cohen-Or
,
D.
,
2014
, “
Approximate Pyramidal Shape Decomposition
,”
ACM Trans. Graph.
,
33
(
6
), p.
213
.
10.
Vanek
,
J.
,
Galicia
,
J. A. G.
,
Benes
,
B.
,
Měch
,
R.
,
Carr
,
N.
, and
Stava
,
O.
,
2015
, “
Packmerger: A 3D Print Volume Optimizer
,”
Comput. Graph. Forum
,
33
(
6
), pp.
322
332
.
11.
Gao
,
W.
,
Zhang
,
Y.
,
Nazzetta
,
D. C.
,
Ramani
,
K.
, and
Cipra
,
R. J.
,
2015
, “
RevoMaker: Enabling Multi-Directional and Functionally-Embedded 3D Printing Using a Rotational Cuboidal Platform
,”
Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology
,
Nov. 8–11
,
Charlotte, NC
, pp.
437
446
.
12.
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
,
36
, pp.
231
243
.
13.
Majhi
,
J.
,
Janardan
,
R.
,
Smid
,
M.
, and
Gupta
,
P.
,
1999
, “
On Some Geometric Optimization Problems in Layered Manufacturing
,”
Comp. Geom. Theor. Appl.
,
12
(
3–4
), pp.
219
239
.
14.
Ezair
,
B.
,
Massarwi
,
F.
, and
Elber
,
G.
,
2015
, “
Orientation Analysis of 3D Objects Toward Minimal Support Volume in 3D-Printing
,”
Comput. Graph.
,
51
(
C
), pp.
117
124
.
15.
Zhang
,
X. T.
,
Le
,
X. Y.
,
Panotopoulou
,
A.
,
Whiting
,
E.
, and
Wang
,
C. C. L.
,
2015
, “
Perceptual Models of Preference in 3D Printing Direction
,”
ACM Trans. Graph.
,
34
(
6
), p.
215
.
16.
Huang
,
X.
,
Ye
,
C.
,
Wu
,
S.
,
Guo
,
K.
, and
Mo
,
J.
,
2009
, “
Sloping Wall Structure Support Generation for Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Tech.
,
42
(
11–12
), pp.
1074
1081
.
17.
Cloots
,
M.
,
Spierings
,
A. B.
, and
Wegener
,
K.
,
2013
, “
Assessing New Support Minimizing Strategies for the Additive Manufacturing Technology SLM
,”
24th International SFF Symposium-An Additive Manufacturing Conference
,
Austin, TX
, Jan., pp.
631
643
.
18.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Tech.
,
66
(
9–12
), pp.
1247
1254
.
19.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
, and
Carr
,
N.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graph.
,
31
(
4
), p.
48
.
20.
Wang
,
W.
,
Wang
,
T. Y.
,
Yang
,
Z.
,
Liu
,
L.
,
Tong
,
X.
, and
Tong
,
W.
,
2013
, “
Cost-Effective Printing of 3D Objects With Skin-Frame Structures
,”
ACM Trans. Graph.
,
32
(
6
), p.
177
.
21.
Wang
,
W.
,
Qian
,
S.
,
Lin
,
L.
,
Li
,
B.
,
Yin
,
B.
, and
Liu
,
L.
,
2017
, “
Support-Free Frame Structures
,”
Comput. Graph.
,
66
, pp.
154
161
.
22.
Dumas
,
J.
,
Hergel
,
J.
, and
Lefebvre
,
S.
,
2014
, “
Bridging the Gap: Automated Steady Scaffoldings for 3D Printing
,”
ACM Trans. Graph.
,
33
(
4
), p.
98
.
23.
Zhang
,
X.
,
Xia
,
Y.
,
Wang
,
J.
,
Yang
,
Z.
,
Tu
,
C.
, and
Wang
,
W.
,
2015
, “
Medial Axis Tree—An Internal Supporting Structure for 3D Printing
,”
Comput. Aided Geom. Des.
,
35
(
C
), pp.
149
162
.
24.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
25.
Vanek
,
J.
,
Galicia
,
J. A. G.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Comput. Graph. Forum
,
33
(
5
), pp.
117
125
.
26.
Wei
,
X. R.
,
Geng
,
G. H.
, and
Zhang
,
Y. H.
,
2016
, “
Steady and Low Consuming Supporting for Fused Deposition Modeling
,”
Acta Autom. Sin.
,
42
(
1
), pp.
98
106
.
27.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons
,
New York
.
28.
Lanzotti
,
A.
,
Martorelli
,
M.
,
Staiano
,
G.
, and
Martorelli
,
M.
,
2015
, “
Understanding Process Parameter Effects of RepRap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011017
.
29.
Kennedy
,
J.
, and
Eberhart
,
R. C.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, Australia
,
Nov. 27–Dec. 1
, pp.
1942
1948
.
30.
Liu
,
B.
,
Wang
,
L.
,
Jin
,
Y.
,
Tang
,
F.
, and
Huang
,
D.
,
2005
, “
Improved Particle Swarm Optimization Combined With Chaos
,”
Chaos Soliton Fract.
25
(
5
), pp.
1261
1271
.
31.
Kiran
,
M. S.
,
Gündüz
,
M.
, and
Baykan
,
O. K.
,
2012
, “
A Novel Hybrid Algorithm Based on Particle Swarm and Ant Colony Optimization for Finding the Global Minimum
,”
Appl. Math. Comput.
,
219
(
4
), pp.
1515
1521
.
32.
Zhao
,
G.
,
Zhou
,
C.
, and
Das
,
S.
, “
Solid Mechanics Based Design and Optimization for Support Structure Generation in Stereolithography Based Additive Manufacturing
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Boston, MA
,
Aug. 2–5, 2015
, Paper No. DETC2015-47902, p. V01AT02A035.
33.
Coello
,
C. A. C.
,
Lamont
,
G. B.
, and
Veldhuizen
,
D. A. V.
,
2002
,
Evolutionary Algorithms for Solving Multi-Objective Problems
, 1st ed.,
Kluwer
,
Norwell, MA
.
34.
Coello
,
C. A. C.
,
Pulido
,
G. T.
, and
Lechuga
,
M. S.
,
2004
, “
Handling Multiple Objectives With Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
256
279
.
You do not currently have access to this content.