Abstract

In an increasingly intelligent modern society, whether in industrial production activities or daily life, mechanical transmission equipment is more and more widely used. Once a failure occurs, it will not only cause the stagnation of industrial production, bring huge economic losses and environmental pollution, but may also cause casualties. Therefore, it is particularly important to identify and monitor the performance degradation of mechanical equipment. Based on the convolutional neural network (CNN), a stacking incremental deformable residual block network recognition model is proposed. This method converts the one-dimensional signal recognition problem into an image recognition problem. The average pooling layer replaces the fully connected layer, and the large-size convolution kernel is replaced with a small-size convolution kernel. With the recognition of the gear performance degradation modes, the experiment proves that the multi-channel recognition model has a better recognition effect.

References

1.
Zhang
,
Q. L.
, and
Hong
,
Y. Q.
,
2018
, “
Intelligent Plant Review
,”
Process Autom. Instrum.
,
39
(
8
), pp.
1
5
.
2.
Zhou
,
Z. G.
, and
Xu
,
F.
,
2016
, “
Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine Considering Strength Degradation and Dependent Failure
,”
J. Mech. Eng.
,
52
(
11
), pp.
80
87
.
3.
Chu
,
X. N.
,
Chen
,
H. S.
, and
Ma
,
H. Z.
,
2021
, “
Identification of Critical Design Parameter for Mechanical Products Based on Performance Data
,”
J. Mech. Eng.
,
57
(
03
), pp.
185
196
.
4.
Yang
,
M.
, and
Makis
,
V.
,
2010
, “
ARX Model-Based Gearbox Fault Detection and Localization Under Varying Load Conditions
,”
J. Sound Vib.
,
329
(
24
), pp.
5209
5221
.
5.
Sharma
,
S.
,
Tiwari
,
S.
, and
Singh
,
S.
,
2019
, “
Diagnosis of Gear Tooth Fault in a Bevel Gearbox Using Discrete Wavelet Transform and Autoregressive Modeling
,”
Life Cycle Reliab. Saf. Eng.
,
8
(
1
), pp.
21
32
.
6.
Liu
,
C. L.
,
Zhou
,
S. P.
, and
Di
,
Y.
,
2012
, “
Online Identification of the Bearing Dynamic Parameters for Rotor-Bearing Systems
,”
Appl. Mech. Mater. Trans. Tech. Publ. Ltd
,
141
, pp.
397
402
.
7.
Muruganatham
,
B.
,
Sanjith
,
M.
, and
Krishnakumar
,
B.
,
2013
, “
Roller Element Bearing Fault Diagnosis Using Singular Spectrum Analysis
,”
Mech. Syst. Signal Process
,
35
(
1–2
), pp.
150
166
.
8.
De Moura
,
E.
,
Souto
,
C.
,
Silva
,
A.
, et al
,
2011
, “
Evaluation of Principal Component Analysis and Neural Network Performance for Bearing Fault Diagnosis From Vibration Signal Processed by RS and DF Analyses
,”
Mech. Syst. Signal Process
,
25
(
5
), pp.
1765
1772
.
9.
Delgado
,
M.
,
Cirrincione
,
G.
,
Espinosa
,
A. G.
,
Ortega
,
J. A.
, and
Henao
,
H.
,
2013
, “
Dedicated Hierarchy of Neural Networks Applied to Bearings Degradation Assessment
,”
IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)
,
Valencia, Spain
,
Aug. 27–30
, pp.
544
551
.
10.
Boutros
,
T.
, and
Liang
,
M.
,
2011
, “
Detection and Diagnosis of Bearing and Cutting Tool Faults Using Hidden Markov Models
,”
Mech. Syst. Signal Process
,
25
(
6
), pp.
2102
2124
.
11.
Lu
,
C.
,
Wang
,
Z. Y.
, and
Qin
,
W. L.
,
2017
, “
Fault Diagnosis of Rotary Machinery Components Using a Stacked Denoising Autoencoder-Based Health State Identification
,”
Signal Process.
,
130
, pp.
377
388
.
12.
Chen
,
Z.
, and
Li
,
W.
,
2017
, “
Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network
,”
IEEE Trans. Instrum. Meas.
,
66
(
7
), pp.
1693
1702
.
13.
Zhao
,
R.
,
Wang
,
D.
, and
Yan
,
R.
,
2017
, “
Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1539
1548
.
14.
Chen
,
J. N.
,
Zhou
,
Y. X.
,
Bai
,
Z.
,
Zhao
,
Y. Z.
,
Zhang
,
Y. X.
, and
Zhang
,
L.
,
2022
, “
Pattern Recognition Method of Partial Discharge in Oil-Paper Insulation Based on Multi-Channel Convolutional Neural Network
,”
High Volt. Eng.
, pp.
1
10
.
15.
Benyahia
,
I.
,
Beladgham
,
M.
, and
Bassou
,
A.
,
2018
, “
Evaluation of the Medical Image Compression Using Wavelet Packet Transform and SPIHT Coding
,”
Int. J. Electr. Comput. Eng.
,
8
(
4
), pp.
2139
2147
.
16.
Vitali
,
A.
,
Maffioletti
,
F.
,
Regazzoni
,
D.
, and
Rizzi
,
C.
,
2020
, “
Quantitative Assessment of Shoulder Rehabilitation Using Digital Motion Acquisition and Convolutional Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
054502
.
17.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
.
18.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge
.
19.
Lin
,
J. D.
,
Wu
,
X. Y.
,
Chai
,
Y.
, and
Yin
,
H. P.
,
2020
, “
Structure Optimization of Convolutional Neural Networks: A Survey
,”
Acta Automatica Sinica
,
46
(
01
), pp.
24
37
.
20.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2020
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
.
21.
Zhang
,
A. A.
,
Huang
,
J. Y.
,
Ji
,
S. W.
, and
Li
,
D.
,
2020
, “
Bearing Fault Pattern Recognition Based on Image Classification With CNN
,”
J. Vib. Shock
,
39
(
4
), pp.
165
171
. http://dx.doli.org/10.13465/j.cnki.jvs.2020.04.021
22.
Li
,
Y.
, and
Wang
,
K.
,
2020
, “
Modified Convolutional Neural Network With Global Average Pooling for Intelligent Fault Diagnosis of Industrial Gearbox
,”
Eksploat. i Niezawodn.
,
22
(
1
), pp.
63
72
.
23.
Wang
,
X. J.
, and
Zhi
,
M.
,
2021
, “
Human Motion Recognition Based on Deformable Convolutional Neural Network
,”
Comput. Eng. Sci.
,
43
(
1
), pp.
105
111
.
24.
Konovalenko
,
I.
,
Maruschak
,
P.
, and
Brevus
,
V.
,
2021
, “
Steel Surface Defect Detection Using an Ensemble of Deep Residual Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014501
.
25.
Ren
,
H. J.
,
Yin
,
A. J.
, and
Chen
,
Y.
,
2021
, “
Multivariate Invertible Deep Probabilistic Learning and Gear Degeneration Evaluation
,”
Chin. J. Sci. Instrum.
,
42
(
4
), pp.
131
139
.
26.
He
,
B.
,
Liu
,
L.
, and
Zhang
,
D.
,
2021
, “
Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030801
.
27.
Ai
,
Y. B.
,
Sun
,
C.
, and
Zhang
,
W. D.
,
2018
, “
Fault Diagnosis of High Speed Gear-Box Shell Based on Performance Degradation and Material Damage Characterization
,”
Control Des.
,
33
(
7
), pp.
1264
1270
.
28.
He
,
B.
,
Li
,
T. Y.
, and
Xiao
,
J. L.
,
2021
, “
Digital Twin-Driven Controller Tuning Method for Dynamics
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031010
.
You do not currently have access to this content.