Abstract

System of systems (SoS) are networked integration of constituent systems that together achieve new capabilities not possible through the operation of any single system. SoS can be found across all aspects of modern life such as power grids, supply chains, and disaster monitoring and tracking services. Their resilience (being able to withstand and recover from disruptions) is a critical attribute whose evaluation is nontrivial and requires detailed disruption models. Engineers rely on heuristics (such as redundancy and localized capacity) for achieving resilience. However, excessive reliance on these qualitative guidelines can result in unacceptable operation costs, erosion of profits, over-consumption of natural resources, or unacceptable levels of waste or emissions. Graph-theoretic approaches provide a potential solution to this challenge as they can evaluate architectural characteristics without needing detailed performance simulations, supporting their use in early stage SoS architecture selection. However, no consensus exists as to which graph-theoretic metrics are most valuable for SoS design and how they should be included in the design process. In this work, multiple graph-theoretic approaches are analyzed and compared, on a common platform, for their use as design tools for resilient SoS. The metrics central point dominance, modularity, specialized predator ratio, generalization, vulnerability, and degree of system order are found to be viable options for the development of early stage decision-support tools for resilient SoS design.

References

1.
Jamshidi
,
M.
,
2009
, “Introduction to System of Systems,”
System of Systems Engineering Innovations for the 21st Century
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1
43
.
2.
Maier
,
M. W.
,
1998
, “
Architecting Principles for Systems-of-Systems
,”
Syst. Eng.
,
1
(
4
), pp.
267
284
.
3.
White
,
B. E.
,
2006
, “
Fostering Intra-Organizational Communication of Enterprise Systems Engineering Practices
,”
National Defense Industrial Association (NDIA), Ninth Annual Systems Engineering Conference
,
San Diego, CA
,
Oct. 23–26
.
4.
Sage
,
A. P.
, and
Cuppan
,
C. D.
,
2001
, “
On the Systems Engineering and Management of Systems of Systems and Federations of Systems
,”
Inf. Knowl. Syst. Manag.
,
2
(
4
), pp.
325
345
.
5.
Hosseini
,
S.
,
Barker
,
K.
, and
Ramirez-Marquez
,
J. E.
,
2016
, “
A Review of Definitions and Measures of System Resilience
,”
Reliab. Eng. Syst. Saf.
,
145
, pp.
47
61
.
6.
Bhamra
,
R.
,
Dani
,
S.
, and
Burnard
,
K.
,
2011
, “
Resilience: The Concept, a Literature Review and Future Directions
,”
Int. J. Prod. Res.
,
49
(
18
), pp.
5375
5393
.
7.
Wied
,
M.
,
Oehmen
,
J.
, and
Welo
,
T.
,
2020
, “
Conceptualizing Resilience in Engineering Systems: An Analysis of the Literature
,”
Syst. Eng.
,
23
(
1
), pp.
3
13
.
8.
Raz
,
A. K.
, and
Kenley
,
C. R.
,
2019
, “
Multi-Disciplinary Perspectives for Engineering Resilience in Systems
,”
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
,
Bari, Italy
,
Oct. 6–9
, pp.
761
766
.
9.
Uday
,
P.
, and
Marais
,
K.
,
2015
, “
Designing Resilient Systems-of-Systems: A Survey of Metrics, Methods, and Challenges
,”
Syst. Eng.
,
18
(
5
), pp.
491
510
.
10.
NOAA National Centers for Environmental Information
,
2021
, “
US Billion-Dollar Weather and Climate Disasters
,” Report, https://www.ncdc.noaa.gov/billions/.
11.
Fletcher
,
S.
, and
Jenkins
,
J.
,
2021
, “
As the Texas Power Crisis Shows, Our Infrastructure Is Vulnerable to Extreme Weather
,” Technical blog, https://www.technologyreview.com/2021/03/06/1020389/texas-power-crisis-vulnerable-infrastructure-extreme-weather/.
12.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O’Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.
13.
Ayyub
,
B. M.
,
2014
, “
Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making
,”
Risk Anal.
,
34
(
2
), pp.
340
355
.
14.
Tran
,
H. T.
,
Balchanos
,
M.
,
Domerçant
,
J. C.
, and
Mavris
,
D. N.
,
2017
, “
A Framework for the Quantitative Assessment of Performance-based System Resilience
,”
Reliab. Eng. Syst. Saf.
,
158
, pp.
73
84
.
15.
Uday
,
P.
,
Chandrahasa
,
R.
, and
Marais
,
K.
,
2019
, “
System Importance Measures: Definitions and Application to System-of-Systems Analysis
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106582
.
16.
Jackson
,
S.
, and
Ferris
,
T. L. J.
,
2013
, “
Resilience Principles for Engineered Systems
,”
Syst. Eng.
,
16
(
2
), pp.
152
164
.
17.
Raz
,
A. K.
, and
DeLaurentis
,
D. A.
,
2017
, “
System-of-Systems Architecture Metrics for Information Fusion: A Network Theoretic Formulation
,”
AIAA Information Systems—AIAA Infotech@ Aerospace
,
Montreal, Quebec, Canada
,
Apr. 24–27
, p.
1292
.
18.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Designing Industrial Networks Using Ecological Food Web Metrics
,”
Environ. Sci. Technol.
,
50
(
20
), pp.
11243
11252
.
19.
Panyam
,
V.
,
Huang
,
H.
,
Davis
,
K.
, and
Layton
,
A.
,
2019
, “
Bio-inspired Design for Robust Power Grid Networks
,”
Appl. Energy
,
251
, p.
113349
.
20.
Brehm
,
C.
, and
Layton
,
A.
,
2020
, “
Nestedness in Eco-industrial Parks: Exploring Linkage Distribution to Promote Sustainable Industrial Growth
,”
J. Ind. Ecol.
,
25
(
1
), pp.
205
218
.
21.
Dave
,
T.
, and
Layton
,
A.
,
2020
, “
Designing Ecologically-inspired Robustness Into a Water Distribution Network
,”
J. Cleaner Prod.
,
254
, p.
120057
.
22.
Chatterjee
,
A.
,
Malak
,
R.
, and
Layton
,
A.
,
2021
, “
Exploring System of Systems Resilience Versus Affordability Trade-Space Using a Bio-inspired Metric
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050905
.
23.
Chatterjee
,
A.
,
Helbig
,
C.
,
Malak
,
R.
, and
Layton
,
A.
,
2022
, “
A Survey of Graph-Theoretic Approaches for Resilient System of Systems Design
,”
ASME 2022 International Design Engineering Technical Conferences and Computers & Information in Engineering Conference. Volume 2: 42nd Computers and Information in Engineering Conference (CIE)
.
St. Louis, MO
,
Aug. 14–17
, ASME, p. V002T02A076. .
24.
Harrison
,
W. K.
,
2016
, “
The Role of Graph Theory in System of Systems Engineering
,”
IEEE Access
,
4
, pp.
1716
1742
.
25.
Ip
,
W. H.
, and
Wang
,
D.
,
2011
, “
Resilience and Friability of Transportation Networks: Evaluation, Analysis and Optimization
,”
IEEE Syst. J.
,
5
(
2
), pp.
189
198
.
26.
Zhang
,
X.
,
Miller-Hooks
,
E.
, and
Denny
,
K.
,
2015
, “
Assessing the Role of Network Topology in Transportation Network Resilience
,”
J. Transp. Geogr.
,
46
, pp.
35
45
.
27.
Zhou
,
Y.
,
Wang
,
J.
, and
Yang
,
H.
,
2019
, “
Resilience of Transportation Systems: Concepts and Comprehensive Review
,”
IEEE Trans. Intell. Trans. Syst.
,
20
(
12
), pp.
4262
4276
.
28.
Clark
,
K. L.
,
Bhatia
,
U.
,
Kodra
,
E. A.
, and
Ganguly
,
A. R.
,
2018
, “
Resilience of the Us National Airspace System Airport Network
,”
IEEE Trans. Intell. Trans. Syst.
,
19
(
12
), pp.
3785
3794
.
29.
Yang
,
G.
,
Zhang
,
W.
,
Xiu
,
B.
,
Liu
,
Z.
,
Huang
,
J. J. C.
, and
Theory
,
M. O.
,
2014
, “
Key Potential-oriented Criticality Analysis for Complex Military Organization Based on Finc-e Model
,”
Comput. Math. Organ. Theory
,
20
(
3
), pp.
278
301
.
30.
Narimani
,
M. R.
,
Huang
,
H.
,
Umunnakwe
,
A.
,
Mao
,
Z.
,
Sahu
,
A.
,
Zonouz
,
S.
, and
Davis
,
K.
,
2021
, “
Generalized Contingency Analysis Based on Graph Theory and Line Outage Distribution Factor
,”
IEEE Syst. J.
,
16
(
1
), pp.
626
636
.
31.
Meng
,
F.
,
Fu
,
G.
,
Farmani
,
R.
,
Sweetapple
,
C.
, and
Butler
,
D.
,
2018
, “
Topological Attributes of Network Resilience: A Study in Water Distribution Systems
,”
Water Res.
,
143
, pp.
376
386
.
32.
Walsh
,
H. S.
,
Dong
,
A.
, and
Tumer
,
I. Y.
,
2019
, “
An Analysis of Modularity As a Design Rule Using Network Theory
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031102
.
33.
Bhasin
,
D.
,
Staack
,
D.
, and
McAdams
,
D. A.
,
2021
, “
Designing Robust Systems Using Bioinspired Product Architecture
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 6: 33rd International Conference on Design Theory and Methodology (DTM)
,
Virtual, Online
.
Aug. 17–19
, ASME, p. V006T06A006.
34.
Ulanowicz
,
R. E.
,
2004
, “
Quantitative Methods for Ecological Network Analysis
,”
Comput. Biol. Chem.
,
28
(
5
), pp.
321
339
.
35.
Malone
,
S. M.
,
Cohen
,
A. R.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2018
, “
The Application of Detrital Actors in Industrial Systems
,”
Procedia CIRP
,
69
, pp.
867
871
.
36.
Genc
,
O.
,
van Capelleveen
,
G.
,
Erdis
,
E.
,
Yildiz
,
O.
, and
Yazan
,
D. M.
,
2019
, “
A Socio-ecological Approach to Improve Industrial Zones Towards Eco-Industrial Parks
,”
J. Environ. Manag.
,
250
, p.
109507
.
37.
Chatterjee
,
A.
,
Brehm
,
C.
, and
Layton
,
A.
,
2021
, “
Evaluating Benefits of Ecologically-Inspired Nested Architectures for Industrial Symbiosis
,”
Resour. Conserv. Recycl.
,
167
, p.
105423
.
38.
Chatterjee
,
A.
, and
Layton
,
A.
,
2020
, “
Mimicking Nature for Resilient Resource and Infrastructure Network Design
,”
Reliab. Eng. Syst. Saf.
,
204
, p.
107142
.
39.
Chatterjee
,
A.
,
Malak
,
R.
, and
Layton
,
A.
,
2021
, “
Ecology-inspired Resilient and Affordable System of Systems Using Degree of System Order
,”
Syst. Eng.
,
25
(
1
), pp.
3
18
.
40.
Chatterjee
,
A.
,
Malak
,
R.
, and
Layton
,
A.
,
2022
, “A Bioinspired Framework for Analyzing and Predicting the Trade-off Between System of Systems Attributes,”
Recent Trends and Advances in Model Based Systems Engineering
,
A. M.
Madni
,
B.
Boehm
,
D.
Erwin
,
M.
Moghaddam
,
M.
Sievers
, and
M.
Wheaton
, eds.,
Springer
, pp.
503
513
.
41.
Watson
,
B. C.
,
Malone
,
S.
,
Weissburg
,
M.
, and
Bras
,
B.
,
2020
, “
Adding a Detrital Actor to Increase System of System Resilience: A Case Study Test of a Biologically Inspired Design Heuristic to Guide Sociotechnical Network Evolution
,”
ASME J. Mech. Des.
,
142
(
12
), p.
121705
.
42.
Di
,
L.
,
Moe
,
K.
, and
van Zyl
,
T. L.
,
2010
, “
Earth Observation Sensor Web: An Overview
,”
IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens.
,
3
(
4
), pp.
415
417
.
43.
Freeman
,
L. C.
,
1977
, “
A Set of Measures of Centrality Based on Betweenness
,”
Sociometry
,
40
(
1
), pp.
35
41
.
44.
Snijders
,
T. A. B.
,
1981
, “
The Degree Variance: An Index of Graph Heterogeneity
,”
Social Netw.
,
3
(
3
), pp.
163
174
.
45.
Newman
,
M. E. J.
,
2006
, “
Modularity and Community Structure in Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
23
), pp.
8577
8582
.
46.
Leicht
,
E. A.
, and
Newman
,
M. E. J.
,
2008
, “
Community Structure in Directed Networks
,”
Phys. Rev. Lett.
,
100
(
11
), p.
118703
.
47.
Zhuo
,
Z.
,
2018
, “
Community Detection by Maximizing Modularity – Python Implementaion of Newman Spectral Method
,” Python library, https://github.com/zhiyzuo/python-modularity-maximization.
48.
Mariani
,
M. S.
,
Ren
,
Z. -M.
,
Bascompte
,
J.
, and
Tessone
,
C. J.
,
2019
, “
Nestedness in Complex Networks: Observation, Emergence, and Implications
,”
Phys. Rep.
,
813
, pp.
1
90
.
49.
Cantor
,
M.
,
Pires
,
M. M.
,
Marquitti
,
F. M.
,
Raimundo
,
R. L.
,
Sebastián-González
,
E.
,
Coltri
,
P. P.
,
Perez
,
S. I.
,
Barneche
,
D. R.
,
Brandt
,
D. Y.
, and
Nunes
,
K. J. P. O.
,
2017
, “
Nestedness Across Biological Scales
,”
PLoS One
,
12
(
2
), p.
e0171691
.
50.
Spielman
,
D. A.
,
2007
, “
Spectral Graph Theory and Its Applications
,”
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07)
,
Providence, RI
,
Oct. 21–23
, pp.
29
38
.
51.
Ulanowicz
,
R. E.
,
2009
, “
The Dual Nature of Ecosystem Dynamics
,”
Ecol. Modell.
,
220
(
16
), pp.
1886
1892
.
52.
Ulanowicz
,
R. E.
,
Goerner
,
S. J.
,
Lietaer
,
B.
, and
Gomez
,
R.
,
2009
, “
Quantifying Sustainability: Resilience, Efficiency and the Return of Information Theory
,”
Ecol. Complex.
,
6
(
1
), pp.
27
36
.
53.
Fath
,
B. D.
,
2015
, “
Quantifying Economic and Ecological Sustainability
,”
Ocean Coast. Manag.
,
108
, pp.
13
19
.
54.
U.S. Department of Defense
,
2011
, “
Fact Sheet: Resilience of Space Capabilities
,” Report.
55.
Ratner
,
B.
,
2009
, “
The Correlation Coefficient: Its Values Range Between +1/1, Or Do They
?”
J. Target. Meas. Anal. Market.
,
17
(
2
), pp.
139
142
.
56.
Hölttä-Otto
,
K.
, and
de Weck
,
O.
,
2007
, “
Metrics for Assessing Coupling Density and Modularity in Complex Products and Systems
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 3: 19th International Conference on Design Theory and Methodology; 1st International Conference on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies, Parts A and B
,
Las Vegas, NV
,
Sept. 4–7
, pp.
343
352
.
57.
Peck
,
H.
,
2005
, “
Drivers of Supply Chain Vulnerability: An Integrated Framework
,”
Int. J. Phys. Distrib. Logist. Manag.
,
35
(
4
), pp.
210
232
.
You do not currently have access to this content.