Abstract

In today's highly competitive industrial environment, machine health management systems become a crucial factor for sustainability and success. The traditional feature extraction methods to reveal the health condition of the machine are labor-extensive. They usually depend on engineered design features, which require an expert knowledge level. Inspired by the successful results of deep-learning approaches that redefine representation learning from raw data, we propose moving-averaged features-based on Long-Short Term Memory (MaF-LSTM) networks. It is a hybrid approach that combines engineered features design with self-feature learning for the purpose of machine condition monitoring. First, features from overlapped sliding windows of the input time-series signals are extracted. Then, a moving-average filter is applied on the top of the generated features to enhance the feature’s condition indicter’s content. Next, a bidirectional LSTM is applied to learn the feature representation from the moving-averaged features. Two experiments, namely, bearing fault diagnosis and hydraulic accumulator fault detection, are implemented to verify the effectiveness of the proposed MaF-LSTM. The experimental results demonstrated that the proposed method outperforms all traditional condition monitoring methods in both use cases.

References

1.
Zhu
,
J.
,
Chen
,
N.
, and
Shen
,
C.
,
2020
, “
A New Data-Driven Transferable Remaining Useful Life Prediction Approach for Bearing Under Different Working Conditions
,”
Mech. Syst. Signal Process.
,
139
, p.
106602
.
2.
Khan
,
S.
, and
Yairi
,
T.
,
2018
, “
A Review on the Application of Deep Learning in System Health Management
,”
Mech. Syst. Signal Process.
,
107
, pp.
241
265
.
3.
Lee
,
G.-Y.
,
Kim
,
M.
,
Quan
,
Y.-J.
,
Kim
,
M.-S.
,
Kim
,
T. J. Y.
,
Yoon
,
H.-S.
,
Min
,
S.
, et al
,
2018
, “
Machine Health Management in Smart Factory: A Review
,”
J. Mech. Sci. Technol.
,
32
(
3
), pp.
987
1009
.
4.
Mosallam
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2013
, “
Nonparametric Time Series Modelling for Industrial Prognostics and Health Management
,”
Int. J. Adv. Manuf. Technol.
,
69
(
6–8
), pp.
1685
1699
.
5.
Liao
,
W.
,
Wang
,
Y.
, and
Pan
,
E.
,
2012
, “
Single-Machine-Based Predictive Maintenance Model Considering Intelligent Machinery Prognostics
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1–4
), pp.
51
63
.
6.
Wang
,
J.
,
Zhao
,
R.
,
Wang
,
D.
,
Yan
,
R.
,
Mao
,
K.
, and
Shen
,
F.
,
2017
, “
Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1539
1548
.
7.
Lei
,
Y.
,
Yang
,
B.
,
Jiang
,
X.
,
Jia
,
F.
,
Li
,
N.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Signal Process.
,
138
, p.
106587
.
8.
Baur
,
M.
,
Albertelli
,
P.
, and
Monno
,
M.
,
2020
, “
A Review of Prognostics and Health Management of Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
2843
2863
.
9.
Cerrada
,
M.
,
Sánchez
,
R. V.
,
Li
,
C.
,
Pacheco
,
F.
,
Cabrera
,
D.
,
Valente de Oliveira
,
J.
, and
Vásquez
,
R. E.
,
2018
, “
A Review on Data-Driven Fault Severity Assessment in Rolling Bearings
,”
Mech. Syst. Signal Process.
,
99
, pp.
169
196
.
10.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.
11.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Networks
,
61
, pp.
85
117
.
12.
Kedadouche
,
M.
,
Thomas
,
M.
, and
Tahan
,
A.
,
2016
, “
A Comparative Study Between Empirical Wavelet Transforms and Empirical Mode Decomposition Methods: Application to Bearing Defect Diagnosis
,”
Mech. Syst. Signal Process.
,
81
, pp.
88
107
.
13.
Ahsan
,
S.
,
Lemma
,
T. A.
, and
Gebremariam
,
M. A.
,
2020
, “
Reliability Analysis of Gas Turbine Engine by Means of Bathtub-Shaped Failure Rate Distribution
,”
Process Saf. Prog.
,
39
(
S1
), p.
e12115
.
14.
Huang
,
R.
,
Liao
,
Y.
,
Zhang
,
S.
, and
Li
,
W.
,
2019
, “
Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis
,”
IEEE Access.
,
7
, pp.
1848
1858
.
15.
Niu
,
G.
,
2016
,
Data-Driven Technology for Engineering Systems Health Management
, 1st ed.,
Springer
,
Beijing, China
, pp.
XIII
357
.
16.
He
,
X.
,
Cai
,
D.
, and
Niyogi
,
P.
,
2005
, “
Laplacian Score for Feature Selection
,”
Adv. Neural Inf. Process. Syst.
,
18
, pp.
507
514
. https://dl.acm.org/doi/10.5555/2976248.2976312
17.
Zhao
,
H.
,
Zheng
,
J.
,
Xu
,
J.
, and
Deng
,
W.
,
2019
, “
Fault Diagnosis Method Based on Principal Component Analysis and Broad Learning System
,”
IEEE Access.
,
7
, pp.
99263
99272
.
18.
Kononenko
,
I.
,
1994
, “
Estimating Attributes: Analysis and Extensions of RELIEF
,”
Lect. Notes Comput. Sci.
,
784
(
ECML-94
), pp.
171
182
.
19.
Yan
,
X.
, and
Jia
,
M.
,
2019
, “
Application of CSA-VMD and Optimal Scale Morphological Slice Bispectrum in Enhancing Outer Race Fault Detection of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
122
, pp.
56
86
.
20.
Li
,
J.
,
Yao
,
X.
,
Wang
,
H.
, and
Zhang
,
J.
,
2019
, “
Periodic Impulses Extraction Based on Improved Adaptive VMD and Sparse Code Shrinkage Denoising and Its Application in Rotating Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
126
, pp.
568
589
.
21.
Song
,
Y.
,
Zeng
,
S.
,
Ma
,
J.
, and
Guo
,
J.
,
2018
, “
A Fault Diagnosis Method for Roller Bearing Based on Empirical Wavelet Transform Decomposition With Adaptive Empirical Mode Segmentation
,”
Meas. J. Int. Meas. Confed.
,
117
, pp.
266
276
.
22.
Ferreira
,
P. M.
,
Ruano
,
A. E.
,
Silva
,
S.
, and
Conceição
,
E. Z. E.
,
2012
, “
Neural Networks Based Predictive Control for Thermal Comfort and Energy Savings in Public Buildings
,”
Energy Build.
,
55
, pp.
238
251
.
23.
Deng
,
W.
,
Yao
,
R.
,
Zhao
,
H.
,
Yang
,
X.
, and
Li
,
G.
,
2019
, “
A Novel Intelligent Diagnosis Method Using Optimal LS-SVM With Improved PSO Algorithm
,”
Soft Comput.
,
23
(
3
), pp.
2445
2462
.
24.
Gebremariam
,
M. A.
,
Xiang Yuan
,
S.
,
Azhari
,
A.
, and
Lemma
,
T. A.
,
2017
, “
Remaining Tool Life Prediction Based on Force Sensors Signal During End Milling of Stavax ESR Steel
,”
ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
.
25.
Widodo
,
A.
, and
Yang
,
B.-S.
,
2007
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
Mech. Syst. Signal Process
,
21
(
6
), pp.
2560
2574
.
26.
Delgado
,
M.
,
Member
,
S.
,
Cirrincione
,
G.
,
Garcia
,
A.
,
Ortega
,
J. A.
,
Henao
,
H.
, and
Member
,
S.
,
2011
, Bearing Faults Detection by a Novel Condition Monitoring Scheme Based on Statistical-Time Features and Neural Networks.
27.
Niu
,
G.
,
Yang
,
B.
, and
Pecht
,
M.
,
2010
, “
Development of an Optimized Condition-Based Maintenance System by Data Fusion and Reliability-Centered Maintenance
,”
Reliab. Eng. Syst. Saf.
,
95
(
3
), pp.
786
796
.
28.
Yang
,
X.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2016
, “
Induction Motor Fault Diagnosis Based on Ensemble Classifiers
,”
IEEE International Instrumentation and Measurement Technology Conference Proceedings
,
Taipei, Taiwan
,
May 23–26
, pp.
1
5
.
29.
He
,
D.
,
Li
,
R.
, and
Zhu
,
J.
,
2013
, “
Plastic Bearing Fault Diagnosis Based on a Two-Step Data Mining Approach
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3429
3440
.
30.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning : A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.
31.
Suryadevara
,
N. K.
,
2021
, “
Energy and Latency Reductions at the Fog Gateway Using a Machine Learning Classifier
,”
Sustain. Comput. Informatics Syst.
,
31
, p.
100582
.
32.
Gencer
,
K.
, and
Başçiftçi
,
F.
,
2021
, “
Time Series Forecast Modeling of Vulnerabilities in the Android Operating System Using ARIMA and Deep Learning Methods
,”
Sustainable Comput. Informatics Syst.
,
30
, p.
100515
.
33.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
.
34.
Kim
,
K. G.
,
2016
, “
Book Review: Deep Learning
,”
Healthcare Informatics Research
,
22
(
4
), pp.
351
354
.
35.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
36.
Khamparia
,
A.
,
Singh
,
A.
,
Luhach
,
A. K.
,
Pandey
,
B.
, and
Pandey
,
D. K.
,
2020
, “
Classification and Identification of Primitive Kharif Crops Using Supervised Deep Convolutional Networks
,”
Sustainable Comput.: Inform. Syst.
,
28
, p.
100340
.
37.
Lei
,
Y.
,
Jia
,
F.
,
Lin
,
J.
,
Xing
,
S.
, and
Ding
,
S. X.
,
2016
, “
An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
,”
IEEE Trans. Ind. Electron.
,
63
(
5
), pp.
3137
3147
.
38.
Tamilselvan
,
P.
, and
Wang
,
P.
,
2013
, “
Failure Diagnosis Using Deep Belief Learning Based Health State Classification
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
124
135
.
39.
Ma
,
M.
,
Chen
,
X.
,
Wang
,
S.
, and
Liu
,
Y.
,
2016
, “
Bearing Degradation Assessment Based on Weibull Distribution and Deep Belief Network
,”
Proceedings of the 2016 International Symposium on Flexible Automation (ISFA)
,
Cleveland, OH
,
Aug. 1–3
, pp.
382
385
.
40.
Chen
,
Z.
,
Li
,
C.
, and
Sánchez
,
R.
,
2015
, “
Multi-Layer Neural Network With Deep Belief Network for Gearbox Fault Diagnosis
,”
J. Vibroeng.
,
17
(
5
), pp.
2379
2392
. https://www.extrica.com/article/16039
41.
Guo
,
L.
,
Gao
,
H.
,
Huang
,
H.
,
He
,
X.
, and
Li
,
S.
,
2016
, “
Multifeatures Fusion and Nonlinear Dimension Reduction for Intelligent Bearing Condition Monitoring
,”
Shock. Vib.
,
2016
, pp.
1
26
.
42.
Yang
,
L.
,
Ye
,
Z. S.
,
Lee
,
C. G.
,
Yang
,
S. F.
, and
Peng
,
R.
,
2019
, “
A Two-Phase Preventive Maintenance Policy Considering Imperfect Repair and Postponed Replacement
,”
Eur. J. Oper. Res.
,
274
(
3
), pp.
966
977
.
43.
Song
,
L.
,
Wang
,
H.
, and
Chen
,
P.
,
2018
, “
Step-by-Step Fuzzy Diagnosis Method for Equipment Based on Symptom Extraction and Trivalent Logic Fuzzy Diagnosis Theory
,”
IEEE Trans. Fuzzy Syst.
,
26
(
6
), pp.
3467
3478
.
44.
Yan
,
X.
, and
Jia
,
M.
,
2019
, “
Intelligent Fault Diagnosis of Rotating Machinery Using Improved Multiscale Dispersion Entropy and mRMR Feature Selection
,”
Knowl.-Based Syst.
,
163
, pp.
450
471
.
45.
Saidi
,
L.
,
Ben
,
J.
,
Bechhoefer
,
E.
, and
Benbouzid
,
M.
,
2017
, “
Wind Turbine High-Speed Shaft Bearings Health Prognosis Through a Spectral Kurtosis-Derived Indices and SVR
,”
Appl. Acoust.
,
120
, pp.
1
8
.
46.
Chibani
,
A.
,
Chadli
,
M.
,
Shi
,
P.
, and
Braiek
,
N. B.
,
2017
, “
Fuzzy Fault Detection Filter Design for T-S Fuzzy Systems in the Finite-Frequency Domain
,”
IEEE Trans. Fuzzy Syst.
,
25
(
5
), pp.
1051
1061
.
47.
Jia
,
F.
,
Lei
,
Y.
,
Lu
,
N.
, and
Xing
,
S.
,
2018
, “
Deep Normalized Convolutional Neural Network for Imbalanced Fault Classification of Machinery and Its Understanding via Visualization
,”
Mech. Syst. Signal Process.
,
110
, pp.
349
367
.
48.
Cui
,
L.
,
Wang
,
X.
,
Wang
,
H.
, and
Wu
,
N.
,
2019
, “
Improved Fault Size Estimation Method for Rolling Element Bearings Based on Concatenation Dictionary
,”
IEEE Access.
,
7
, pp.
22710
22718
.
49.
Jia
,
F.
,
Lei
,
Y.
,
Guo
,
L.
,
Lin
,
J.
, and
Xing
,
S.
,
2018
, “
A Neural Network Constructed by Deep Learning Technique and Its Application to Intelligent Fault Diagnosis of Machines
,”
Neurocomputing
,
272
, pp.
619
628
.
50.
Mairal
,
J.
,
Bach
,
F.
, and
Ponce
,
J.
,
2012
, “
Task-Driven Dictionary Learning
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
4
), pp.
791
804
.
51.
Zhang
,
X.
,
Lu
,
X.
,
Li
,
W.
, and
Wang
,
S.
,
2021
, “
Prediction of the Remaining Useful Life of Cutting Tool Using the Hurst Exponent and CNN-LSTM
,”
Int. J. Adv. Manuf. Technol.
,
112
(
7–8
), pp.
2277
2299
.
52.
Chung
,
J.
,
2014
, “
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
,”
Neural Evol. Comput.
,
1
, pp.
1
9
.
53.
Greg
,
V.H.
,
2020
, “
A Review on the Long Short-Term Memory Model
,”
Artificial Intelligence Review
,
53
(
5
), pp.
5929
5955
.
54.
Rui, Z., Dongzhe, W., and Ruqiang, Y.,
2018
, “
Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
,”
IEEE Trans. Indus. Electron.
,
65
(
2
), pp.
1539
1548
.
55.
Cao
,
L.
,
Member
,
S.
, and
Qian
,
Z.
,
2019
, “
Fault Diagnosis of Wind Turbine Gearbox Based on Deep Bi-directional Long Short-Term Memory Under Time-Varying Non-stationary Operating Conditions
,”
IEEE Access.
,
7
, pp.
155219
155228
.
56.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
.
57.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2006
, “
Article in Press Wavelet Filter-Based Weak Signature Detection Method and Its Application on Rolling Element Bearing Prognostics
,”
J. Sound Vib.
,
289
(
4–5
), pp.
1066
1090
.
58.
Helwig
,
N.
,
Pignanelli
,
E.
, and
Schütze
,
A.
,
2015
, “
Condition Monitoring of a Complex Hydraulic System Using Multivariate Statistics
,”
Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
,
Pisa, Italy
,
May 11–14
, pp.
210
215
.
59.
Helwig
,
N.
,
Pignanelli
,
E
, and
Schütze
,
A.
,
2015
, “
Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System
,”
Proceedings SENSOR 2015
, pp.
641
646
.
60.
Akpudo
,
U. E.
, and
Hur
,
J.-W.
,
2020
, “
Towards Bearing Failure Prognostics: A Practical Comparison Between Data-Driven Methods for Industrial Applications
,”
J. Mech. Sci. Technol.
,
34
(
10
), pp.
4161
4172
.
You do not currently have access to this content.