Abstract

Sensor selection is one of the key factors that dictate the performance of estimating vertical wheel forces in vehicle durability design. To select K most relevant sensors among S candidate ones that best fit the response of one vertical wheel force, it has (SK) possible choices to evaluate, which is not practical unless K or S is small. In order to tackle this issue, this paper proposes a data-driven method based on maximizing the marginal likelihood of the data of the vertical wheel force without knowing the dynamics of vehicle systems. Although the resulting optimization problem is a mixed-integer programming problem, it is relaxed to a convex problem with continuous variables and linear constraints. The proposed sensor selection method is flexible and easy to implement, and the hyper-parameters do not need to be tuned using additional validation data sets. The feasibility and effectiveness of the proposed method are verified using numerical examples and experimental data. In the results of different data sizes and model orders, the proposed method has better fitting performance than that of the group lasso method in the sense of the 2-norm based metric. Also, the computational time of the proposed method is much less than that of the enumeration-based method.

References

1.
Risaliti
,
E.
,
Tamarozzi
,
T.
,
Vermaut
,
M.
,
Cornelis
,
B.
, and
Desmet
,
W.
,
2019
, “
Multibody Model Based Estimation of Multiple Loads and Strain Field on a Vehicle Suspension System
,”
Mech. Syst. Signal Process.
,
123
(
3
), pp.
1
25
.
2.
Johannesson
,
P.
, and
Speckert
,
M.
,
2013
,
Guide to Load Analysis for Durability in Vehicle Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
3.
Kadlec
,
P.
,
Gabrys
,
B.
, and
Strandt
,
S.
,
2009
, “
Data-Driven Soft Sensors in the Process Industry
,”
Comput. Chem. Eng.
,
33
(
4
), pp.
795
814
.
4.
Jiang
,
Y.
,
Yin
,
S.
,
Dong
,
J.
, and
Kaynak
,
O.
,
2020
, “
A Review on Soft Sensors for Monitoring, Control and Optimization of Industrial Processes
,”
IEEE Sensors J.
,
21
(
11
), pp.
12868
12881
.
5.
Wang
,
D.
,
Gong
,
J.
,
Kang
,
Q.
,
Fan
,
D.
, and
Yang
,
J.
,
2019
, “
Soft Sensing for Gas-Condensate Field Production Using Parallel-Genetic-Algorithm-Based Data Reconciliation
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
044501
.
6.
Cumbo
,
R.
,
Mazzanti
,
L.
,
Tamarozzi
,
T.
,
Jiranek
,
P.
,
Desmet
,
W.
, and
Naets
,
F.
,
2021
, “
Advanced Optimal Sensor Placement for Kalman-Based Multiple-Input Estimation
,”
Mech. Syst. Signal Process.
,
160
(
6
), p.
107830
.
7.
Zheng
,
X.
,
Cai
,
R.
,
Xiao
,
S.
,
Qiu
,
Y.
,
Zhang
,
J.
, and
Li
,
M.
,
2021
, “
Primary-Auxiliary Model Scheduling Based Estimation of the Vertical Wheel Force in A Full Vehicle System
,” arXiv preprint arXiv:2107.11511, under review.
8.
El-kafafy
,
M.
,
Csurcsia
,
P.
,
Cornelis
,
B.
,
Enrico
,
R.
, and
Janssens
,
K.
,
2020
, “
Machine Learning and System Identification for the Estimation of Data-Driven Models: An Experimental Case Study Illustrated on a Tire-Suspension System
,”
Proceedings of the International Conference on Noise and Vibration Engineering (ISMA)
,
October
,
KU Leuven
, pp.
3287
3301
.
9.
Zheng
,
X.
,
Zhuang
,
C.
,
Xiao
,
S.
,
Qiu
,
Y.
,
Zhang
,
J.
, and
Li
,
M.
,
2023
, “
Signal Estimation for Vehicle Body Accelerations Using Piecewise Linear System Identification in the Frequency Domain
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021003
.
10.
Wang
,
Z. X.
,
He
,
Q. P.
, and
Wang
,
J.
,
2015
, “
Comparison of Variable Selection Methods for PLS-Based Soft Sensor Modeling
,”
J. Process Control
,
26
(
6
), pp.
56
72
.
11.
Andersen
,
C. M.
, and
Bro
,
R.
,
2010
, “
Variable Selection in Regression—A Tutorial
,”
J. Chemom.
,
24
(
11–12
), pp.
728
737
.
12.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2015
, “
Time-Domain Analysis of Motion Transmissibilities in Force-Driven and Displacement-Driven Structures
,”
J. Sound Vib.
,
347
(
4
), pp.
169
183
.
13.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2018
, “
Experimental Application of Time-Domain Transmissibility Identification to Fault Detection and Localization in Acoustic Systems
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021017
.
14.
Welch
,
W. J.
,
1982
, “
Branch-and-Bound Search for Experimental Designs Based on D-Optimality and Other Criteria
,”
Technometrics
,
24
(
1
), pp.
41
48
.
15.
Lawler
,
E. L.
, and
Wood
,
D. E.
,
1966
, “
Branch-and-Bound Methods: A Survey
,”
Oper. Res.
,
14
(
4
), pp.
699
719
.
16.
Joshi
,
S.
, and
Boyd
,
S.
,
2008
, “
Sensor Selection Via Convex Optimization
,”
IEEE Trans. Signal Process.
,
57
(
2
), pp.
451
462
.
17.
Subrahmanya
,
N.
,
Shin
,
Y. C.
, and
Meckl
,
P. H.
,
2010
, “
A Bayesian Machine Learning Method for Sensor Selection and Fusion With Application to On-Board Fault Diagnostics
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
182
192
.
18.
Zhang
,
W.
,
Yu
,
J. Z.
,
Zhu
,
F.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Ulu
,
N. G.
,
Arisoy
,
B.
, and
Kara
,
L. B.
,
2019
, “
High Degree of Freedom Hand Pose Tracking Using Limited Strain Sensing and Optical Training
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031014
.
19.
Hoyle
,
C.
,
Tumer
,
I. Y.
,
Mehr
,
A. F.
, and
Chen
,
W.
,
2009
, “
Health Management Allocation During Conceptual System Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021002
.
20.
Singh
,
V.
, and
Willcox
,
K. E.
,
2021
, “
Decision-Making Under Uncertainty for a Digital Thread-Enabled Design Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091707
.
21.
Yao
,
L.
,
Sethares
,
W. A.
, and
Kammer
,
D. C.
,
1993
, “
Sensor Placement for On-Orbit Modal Identification Via a Genetic Algorithm
,”
AIAA J.
,
31
(
10
), pp.
1922
1928
.
22.
Rao
,
A. R. M.
, and
Anandakumar
,
G.
,
2007
, “
Optimal Placement of Sensors for Structural System Identification and Health Monitoring Using a Hybrid Swarm Intelligence Technique
,”
Smart Mater. Struct.
,
16
(
6
), p.
2658
.
23.
Wang
,
J.
,
Law
,
S.
, and
Yang
,
Q.
,
2013
, “
Sensor Placement Methods for an Improved Force Identification in State Space
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
254
267
.
24.
Feng
,
W.
,
Li
,
Q.
,
Lu
,
Q.
,
Li
,
C.
, and
Wang
,
B.
,
2021
, “
Group Relevance Vector Machine for Sparse Force Localization and Reconstruction
,”
Mech. Syst. Signal Process.
,
161
(
6
), p.
107900
.
25.
Stephan
,
C.
,
2012
, “
Sensor Placement for Modal Identification
,”
Mech. Syst. Signal Process.
,
27
(
1
), pp.
461
470
.
26.
Kammer
,
D. C.
,
1991
, “
Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guidance Control Dyn.
,
14
(
2
), pp.
251
259
.
27.
Yin
,
T.
,
Yuen
,
K.-V.
,
Lam
,
H.-F.
, and
Zhu
,
H.-p.
,
2017
, “
Entropy-Based Optimal Sensor Placement for Model Identification of Periodic Structures Endowed With Bolted Joints
,”
Comput.-Aided Civil Infrastruct. Eng.
,
32
(
12
), pp.
1007
1024
.
28.
Yuen
,
K.-V.
,
Katafygiotis
,
L. S.
,
Papadimitriou
,
C.
, and
Mickleborough
,
N. C.
,
2001
, “
Optimal Sensor Placement Methodology for Identification With Unmeasured Excitation
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
4
), pp.
677
686
.
29.
Hu
,
R.
,
Granderson
,
J.
,
Auslander
,
D.
, and
Agogino
,
A.
,
2019
, “
Design of Machine Learning Models With Domain Experts for Automated Sensor Selection for Energy Fault Detection
,”
Appl. Energy
,
235
(
1
), pp.
117
128
.
30.
Yoganathan
,
D.
,
Kondepudi
,
S.
,
Kalluri
,
B.
, and
Manthapuri
,
S.
,
2018
, “
Optimal Sensor Placement Strategy for Office Buildings Using Clustering Algorithms
,”
Energy Build.
,
158
(
1
), pp.
1206
1225
.
31.
CVX Research, I., 2012. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0http://cvxr.com/cvx, August.
32.
Klingspor
,
M.
,
Hansson
,
A.
, and
Löfberg
,
J.
,
2018
, “
Input Selection in ARX Model Estimation Using Group Lasso Regularization
,”
IFAC-PapersOnLine
,
51
(
15
), pp.
897
902
.
33.
Fujiwara
,
K.
, and
Kano
,
M.
,
2015
, “
Efficient Input Variable Selection for Soft-Sensor Design Based on Nearest Correlation Spectral Clustering and Group Lasso
,”
ISA Trans.
,
58
(
4
), pp.
367
379
.
34.
Li
,
B.
,
Zhao
,
Y.-P.
,
Wu
,
H.
, and
Tan
,
H.-J.
,
2021
, “
Optimal Sensor Placement Using Data-Driven Sparse Learning Method With Application to Pattern Classification of Hypersonic Inlet
,”
Mech. Syst. Signal Process.
,
147
(
1
), p.
107110
.
35.
Wang
,
L.
,
Chen
,
G.
, and
Li
,
H.
,
2007
, “
Group Scad Regression Analysis for Microarray Time Course Gene Expression Data
,”
Bioinformatics
,
23
(
12
), pp.
1486
1494
.
36.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2015
, “
Time-Domain Analysis of Sensor-to-Sensor Transmissibility Operators
,”
Automatica
,
53
(
2
), pp.
312
319
.
37.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2020
, “
Output-Only Identification of Input–Output Models
,”
Automatica
,
113
(
2
), p.
108686
.
38.
Lennart
,
L.
,
1999
,
System Identification: Theory for the User
,
PTR Prentice Hall
,
Upper Saddle River, NJ
, pp.
1
14
.
39.
Zhang
,
Z.
,
Poudel
,
L.
,
Sha
,
Z.
,
Zhou
,
W.
, and
Wu
,
D.
,
2020
, “
Data-Driven Predictive Modeling of Tensile Behavior of Parts Fabricated by Cooperative 3D Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021002
.
40.
Chen
,
T.
, and
Ljung
,
L.
,
2013
, “
Implementation of Algorithms for Tuning Parameters in Regularized Least Squares Problems in System Identification
,”
Automatica
,
49
(
7
), pp.
2213
2220
.
41.
Ljung
,
L.
, and
Chen
,
T.
,
2013
, “
What Can Regularization Offer for Estimation of Dynamical Systems?
,”
11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP13)
,
Caen, France
,
July 3–5, 2013
,
IFAC
, pp.
1
8
.
42.
Carlin
,
B.
, and
Louis
,
T.
,
2000
,
Bayes and Empirical Bayes Methods for Data Analysis
, 2nd ed.,
Chapman & Hall/CRC Texts in Statistical Science
,
Taylor & Francis
.
43.
Chen
,
T.
,
Andersen
,
M. S.
,
Ljung
,
L.
,
Chiuso
,
A.
, and
Pillonetto
,
G.
,
2014
, “
System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques
,”
IEEE Trans. Autom. Control
,
59
(
11
), pp.
2933
2945
.
44.
Pronzato
,
L.
, and
Pázman
,
A.
,
2013
, “
Design of Experiments in Nonlinear Models
,”
Lect. Notes Stat.
,
212
(
1
), p.
1
.
45.
Ang
,
M. A.
, and
Gillis
,
N.
,
2018
, “
Volume Regularized Non-negative Matrix Factorizations
,”
2018 Ninth Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
,
Sept. 23–26
,
IEEE
, pp.
1
5
.
46.
Leplat
,
V.
,
Ang
,
A. M.
, and
Gillis
,
N.
,
2019
, “
Minimum-Volume Rank-Deficient Non-Negative Matrix Factorizations
,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
May 12–17
, pp.
3402
3406
.
47.
Gene, H. G., and Van Loan, C. F. 2013, Matrix Computations, JHU Press, Baltimore, MD.
48.
Boyd
,
S.
,
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
49.
Ljung
,
L.
,
2018
, “
The System Identification Toolbox: The Manual
,” Natick, MA, https://www.mathworks.com/products/sysid.html
50.
Grant
,
M.
, and
Boyd
,
S.
,
2008
, “
Graph Implementations for Nonsmooth Convex Programs
.”
Recent Advances in Learning and Control
,
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
, eds.,
Lecture Notes in Control and Information Sciences
,
Springer-Verlag Limited
, pp.
95
110
.
You do not currently have access to this content.