Abstract

Practical manufacturing system operates in highly dynamic and uncertain environments, where stochastic disturbances disrupt the execution of the production schedule as originally developed. Previous dynamic scheduling mainly focuses on the constructing predictive models for machine unavailability, with little studies on the adaptive and self-learning capacities for changing scheduling environments. Therefore, a digital twin (DT) driven scheduling with a dynamic feedback mechanism is proposed, in which a reinforcement learning (RL) based adaptive scheduling is developed in DT to make corrective decisions for the disturbances during production runs. In the proposed architecture, the happening disturbance is first detected in the virtual layer by the status continuously updating in accordance with the physical workshop. Furthermore, the reschedule triggering condition is determined in real-time through the calculation of the progress deviations resulting from disturbances. For the scheduling approach, the distributed RL (DRL) based adaptive scheduling method is built to perceive the dynamic production status from virtual environment and implement corrective strategies to hedge against the occurred disturbances. Finally, the proposed method is verified by a practical job shop case and the corresponding DT system is developed to show the effectiveness and advantages after a practical implementation.

References

1.
Hadavi
,
M. P.
,
1991
, “
Scheduling: Theory, Algorithms and Systems Development
,”
Oper. Res. Proc.
,
1
(
1
), pp.
35
42
.
2.
Ji
,
W.
, and
Wang
,
L.
,
2017
, “
Big Data Analytics Based Fault Prediction for Shop Floor Scheduling
,”
J. Manuf. Syst.
,
43
(
1
), pp.
187
194
.
3.
Rossit
,
D. A.
,
Tohmé
,
F.
, and
Frutos
,
M.
,
2019
, “
Industry 4.0: Smart Scheduling
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3802
3813
.
4.
Ouelhadj
,
D.
, and
Petrovic
,
S.
,
2009
, “
A Survey of Dynamic Scheduling in Manufacturing Systems
,”
J. Schedul.
,
12
(
4
), pp.
417
431
.
5.
Li
,
J. Q.
,
Pan
,
Q. K.
, and
Mao
,
K.
,
2015
, “
A Discrete Teaching-Learning-Based Optimisation Algorithm for Realistic Flowshop Rescheduling Problems
,”
Eng. Appl. Artificial Intell.
,
37
(
1
), pp.
279
292
.
6.
Chen
,
X.
,
An
,
Y.
,
Zhang
,
Z.
, and
Li
,
Y.
,
2020
, “
An Approximate Nondominated Sorting Genetic Algorithm to Integrate Optimization of Production Scheduling and Accurate Maintenance Based on Reliability Intervals
,”
J. Manuf. Syst.
,
54
(
1
), pp.
227
241
.
7.
Liang
,
Y.
,
Li
,
W.
,
Lu
,
X.
, and
Wang
,
S.
,
2019
, “
Fog Computing and Convolutional Neural Network Enabled Prognosis for Machining Process Optimization
,”
J. Manuf. Syst.
,
52
(
1
), pp.
32
42
.
8.
Wang
,
C.
, and
Jiang
,
P.
,
2016
, “
Manifold Learning Based Rescheduling Decision Mechanism for Recessive Disturbances in RFID-Driven Job Shops
,”
J. Intell. Manuf.
,
29
(
7
), pp.
1485
1500
.
9.
Teymourifar
,
A.
,
Ozturk
,
G.
,
Ozturk
,
Z. K.
, and
Bahadir
,
O.
,
2020
, “
Extracting New Dispatching Rules for Multi-objective Dynamic Flexible Job Shop Scheduling With Limited Buffer Spaces
,”
Cogn. Comput.
,
12
(
1
), pp.
195
205
.
10.
Wang
,
Y. F.
,
2018
, “
Adaptive Job Shop Scheduling Strategy Based on Weighted Q-Learning Algorithm
,”
J. Intell. Manuf.
,
31
(
2
), pp.
417
432
.
11.
Qi
,
Q.
,
Tao
,
F.
,
Zuo
,
Y.
, and
Zhao
,
D.
,
2018
, “
Digital Twin Service Towards Smart Manufacturing
,”
Proc. CIRP
,
72
(
1
), pp.
237
242
.
12.
Yi
,
Y.
,
Yan
,
Y.
,
Liu
,
X.
,
Ni
,
Z.
,
Feng
,
J.
, and
Liu
,
J.
,
2020
, “
Digital Twin-Based Smart Assembly Process Design and Application Framework for Complex Products and Its Case Study
,”
J. Manuf. Syst.
,
58
(
1
), pp.
94
107
.
13.
Juarez
,
M.
,
Botti
,
V.
, and
Giret
,
A.
,
2021
, “
Digital Twins: Review and Challenges
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030802
.
14.
Tao
,
F.
,
Qi
,
Q.
,
Wang
,
L.
, and
Nee
,
A.
,
2019
, “
Digital Twins and Cyber-Physical Systems Toward Smart Manufacturing and Industry 4.0: Correlation and Comparison
,”
Engineering
,
5
(
4
), pp.
653
661
.
15.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
C.
, and
Nee
,
A.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
16.
Tao
,
F.
, and
Zhang
,
M.
,
2017
, “
Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing
,”
IEEE Access
,
5
(
1
), pp.
20418
20427
.
17.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
18.
Haag
,
S.
, and
Anderl
,
R.
,
2018
, “
Digital Twin-Proof of Concept
,”
Manuf. Lett.
,
15
(
1
), pp.
64
66
.
19.
Zhou
,
G.
,
Zhang
,
C.
,
Li
,
Z.
,
Ding
,
K.
, and
Wang
,
C.
,
2020
, “
Knowledge-Driven Digital Twin Manufacturing Cell Towards Intelligent Manufacturing
,”
Int. J. Prod. Res.
,
58
(
4
), pp.
1034
1051
.
20.
Glatt
,
M.
,
Sinnwell
,
C.
,
Yi
,
L.
,
Donohoe
,
S.
,
Ravani
,
B.
, and
Aurich
,
J. C.
,
2020
, “
Modeling and Implementation of a Digital Twin of Material Flows Based on Physics Simulation
,”
J. Manuf. Syst.
,
58
(
1
), pp.
231
245
.
21.
Qian
,
W.
,
Guo
,
Y.
,
Cui
,
K.
,
Wu
,
P. X.
,
Fang
,
W.
, and
Liu
,
D.
,
2021
, “
Multidimensional Data Modeling and Model Validation for Digital Twin Workshop
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
031005
.
22.
Wei
,
Y.
,
Hu
,
T.
,
Zhou
,
T.
,
Ye
,
Y.
, and
Luo
,
W.
,
2020
, “
Consistency Retention Method for CNC Machine Tool Digital Twin Model
,”
J. Manuf. Syst.
,
58
(
1
), pp.
313
322
.
23.
Zhang
,
M.
,
Tao
,
F.
, and
Nee
,
A.
,
2020
, “
Digital Twin Enhanced Dynamic Job-Shop Scheduling
,”
J. Manuf. Syst.
,
58
(
1
), pp.
146
156
.
24.
Fang
,
Y.
,
Peng
,
C.
,
Lou
,
P.
,
Zhou
,
Z.
,
Hu
,
J.
, and
Yan
,
J.
,
2019
, “
Digital-Twin-Based Job Shop Scheduling Toward Smart Manufacturing
,”
IEEE Trans. Indust. Inform.
,
15
(
12
), pp.
6425
6435
.
25.
Zhang
,
J.
,
Deng
,
M.
,
Jiang
,
H.
,
Chen
,
H.
,
Qin
,
S.
, and
Ding
,
G.
,
2021
, “
Bi-Level Dynamic Scheduling Architecture Based on Service Unit Digital Twin Agents
,”
J. Manuf. Syst.
,
60
(
1
), pp.
59
79
.
26.
Zhang
,
Z.
,
Zhang
,
C.
,
Yan
,
J.
,
Yang
,
C.
, and
Liu
,
Z.
,
2022
, “
Rapid Construction Method of Equipment Model for Discrete Manufacturing Digital Twin Workshop System
,”
Rob. Comput. Integr. Manuf.
,
75
(
1
), p.
102309
.
27.
Sutton
,
R.
, and
Barto
,
A.
,
2005
, “
Reinforcement Learning: An Introduction
,”
IEEE Trans. Neural Netw.
,
16
(
1
), pp.
285
286
.
28.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
1998
, “
Reinforcement Learning: An Introduction
,”
IEEE Trans. Neural Netw.
,
9
(
5
), p.
1054
.
29.
Zhang
,
Z.
,
Zheng
,
L.
,
Li
,
N.
,
Wang
,
W.
,
Zhong
,
S.
, and
Hu
,
K.
,
2012
, “
Minimizing Mean Weighted Tardiness in Unrelated Parallel Machine Scheduling With Reinforcement Learning
,”
Comput. Oper. Res.
,
39
(
7
), pp.
1315
1324
.
30.
Ji
,
H.
, and
Jin
,
Y.
,
2022
, “
Knowledge Acquisition of Self-Organizing Systems With Deep Multiagent Reinforcement Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021010
.
31.
Shiue
,
Y.
,
Lee
,
K.
, and
Su
,
C.
,
2018
, “
Real-Time Scheduling for a Smart Factory Using a Reinforcement Learning Approach
,”
Comput. Ind. Eng.
,
125
(
7
), pp.
604
614
.
32.
Shahrabi
,
J.
,
Adibi
,
M.
, and
Mahootchi
,
M.
,
2017
, “
A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop Scheduling
,”
Comput. Ind. Eng.
,
110
(
7
), pp.
75
82
.
33.
Ou
,
X.
,
Chang
,
Q.
,
Arinez
,
J.
, and
Zou
,
J.
,
2018
, “
Gantry Work Cell Scheduling Through Reinforcement Learning With Knowledge-Guided Reward Setting
,”
IEEE Access
,
6
(
1
), pp.
14699
14709
.
34.
Zhu
,
H.
,
Li
,
M.
,
Tang
,
Y.
, and
Sun
,
Y.
,
2020
, “
A Deep-Reinforcement-Learning-Based Optimization Approach for Real-Time Scheduling in Cloud Manufacturing
,”
IEEE Access
,
8
(
1
), pp.
9987
9997
.
35.
Hu
,
H.
,
Jia
,
X.
,
He
,
Q.
,
Fu
,
S.
, and
Liu
,
K.
,
2020
, “
Deep Reinforcement Learning Based AGVs Real-Time Scheduling With Mixed Rule for Flexible Shop Floor in Industry 4.0
,”
Comput. Ind. Eng.
,
149
(
1
), p.
106749
.
36.
Waschneck
,
B.
,
Reichstaller
,
A.
,
Belzner
,
L.
,
Altenmuller
,
T.
,
Bauernhansl
,
T.
,
Knapp
,
A.
, and
Kyek
,
A.
,
2018
, “
Minimizing Mean Weighted Tardiness in Unrelated Parallel Machine Scheduling With Reinforcement Learning
,”
51st CIRP Conference on Manufacturing Systems, Procedia CIRP
,
Stockholm, Sverige
, Vol. 72, pp.
1264
1269
.
37.
Luo
,
C.
,
Xiong
,
H.
,
Zhang
,
B.
,
Peng
,
J.
, and
Xiong
,
Z.
,
2021
, “
Multi-Resource Constrained Dynamic Workshop Scheduling Based on Proximal Policy Optimisation
,”
Int. J. Prod. Res
. .
38.
Yan
,
J.
,
Liu
,
Z.
,
Zhang
,
C.
,
Zhang
,
T.
,
Zhang
,
Y.
, and
Yang
,
C.
,
2021
, “
Research on Flexible Job Shop Scheduling Under Finite Transportation Conditions for Digital Twin Workshop
,”
Rob. Comput.-Integr. Manuf.
,
72
(
7
), p.
102198
.
39.
Liu
,
M.
,
2009
, “
Dynamic Rescheduling Optimization of Job-Shop Under Uncertain Conditions
,”
J. Mech. Eng.
,
45
(
10
), pp.
1485
1500
. .
40.
Fang
,
W.
,
Guo
,
Y.
,
Liao
,
W.
,
Ramani
,
K.
, and
Huang
,
S.
,
2020
, “
Big Data Driven Jobs Remaining Time Prediction in Discrete Manufacturing System: A Deep Learning-Based Approach
,”
Int. J. Prod. Res.
,
58
(
9
), pp.
2751
2766
.
41.
Vieira
,
G.
,
Herrmann
,
J.
, and
Lin
,
E.
,
2000
, “
Predicting the Performance of Rescheduling Strategies for Parallel Machine Systems
,”
J. Manuf. Syst.
,
19
(
4
), pp.
256
266
.
42.
Akturk
,
M.
, and
Gorgulu
,
E.
,
1999
, “
Match-Up Scheduling Under a Machine Break-Down
,”
Eur. J. Oper. Res.
,
112
(
1
), pp.
81
97
.
43.
Huang
,
S.
,
Guo
,
Y.
,
Liu
,
D.
,
Zha
,
S.
, and
Fang
,
W.
,
2019
, “
A Two-Stage Transfer Learning Based Deep Learning Approach for Production Progress Prediction in IoT-Enabled Manufacturing
,”
IEEE Internet Thing J.
,
6
(
6
), pp.
10627
10638
.
44.
Zhang
,
J.
,
Ding
,
G.
,
Zou
,
Y.
,
Qin
,
S.
, and
Fu
,
J.
,
2017
, “
Review of Job Shop Scheduling Research and Its New Perspectives Under Industry 4.0
,”
J. Intell. Manuf.
,
30
(
4
), pp.
1809
1830
.
45.
Fang
,
W.
,
Guo
,
Y.
,
Liao
,
W.
,
Huang
,
S.
,
Yang
,
N.
, and
Liu
,
J.
,
2020
, “
A Parallel Gated Recurrent Units (P-GRUs) Network for the Shifting Lateness Bottleneck Prediction in Make-to-Order Production System
,”
Comput. Ind. Eng.
,
140
(
7
), p.
106246
.
46.
Xiao
,
P.
,
Zhang
,
C.
,
Meng
,
L.
,
Hong
,
H.
, and
Dai
,
W.
,
2019
, “
Study on Non-Permutation Flow Shop Scheduling Problem Based on Deep Reinforcement Learning
,”
Comput. Integr. Manuf. Syst
.
47.
Zhang
,
Z.
,
Zheng
,
L.
, and
Weng
,
M.
,
2007
, “
Dynamic Parallel Machine Scheduling With Mean Weighted Tardiness Objective by Q-Learning
,”
Int. J. Adv. Manuf. Technol.
,
34
(
9
), pp.
968
980
.
48.
Xu
,
Z.
,
Chen
,
X.
,
Cao
,
L.
, and
Li
,
C.
,
2017
, “
A Study of Count-Based Exploration and Bonus for Reinforcement Learning
,”
IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA)
,
Chengdu, China
,
Apr. 28–30
, pp.
425
429
.
49.
Izaguirre
,
M.
,
Lobov
,
A.
, and
Lastra
,
J.
,
2011
, “
OPC-UA and DPWS Interoperability for Factory Floor Monitoring Using Complex Event Processing
,”
9th IEEE International Conference on Industrial Informatics
,
Lisbon, Portugal
, pp.
205
211
.
50.
Saez
,
M.
,
Maturana
,
F.
,
Barton
,
K.
, and
Tilbury
,
D.
,
2018
, “
Real-Time Manufacturing Machine and System Performance Monitoring Using Internet of Things
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1735
1748
.
You do not currently have access to this content.