Abstract

Rags, dusts, foreign particles, etc., are the primary cause of blockage in the centrifugal pump and deteriorate the performance. This study elaborates an experimental and data-driven methodology to identify suction, discharge, and simultaneous occurrence of both blockages. The discharge pressure signals are acquired and denoised using CEEMD. The fuzzy recurrence plots obtained from denoised signals are attempted to classify using three pre-trained models: Xception, GoogleNet, and Inception. None of these models are trained on such images; thus, features are extracted from different pooling layers which include shallow features too. The features extracted from different layers are fed to four shallow learning classifiers: Quadratic SVM, Weighted k-nearest network, Narrow Neural network, and subspace discriminant classifier. The study finds that subspace discriminant achieves the highest accuracy of 97.8% when trained using features from second pooling of Xception model. Furthermore, this proposed methodology is implemented at other blockage conditions of the pump. The subspace discriminant analysis outperforms the other selected shallow classifier with an accuracy of 93% for the features extracted from the first pooling layer of the Xception model. Therefore, this study demonstrates an efficient method to identify pump blockage using pre-trained and shallow classifiers.

References

1.
Sakthivel
,
N. R.
,
Sugumaran
,
V.
, and
Babudevasenapati
,
S.
,
2010
, “
Vibration Based Fault Diagnosis of Monoblock Centrifugal Pump Using Decision Tree
,”
Expert Syst. Appl.
,
37
(
6
), pp.
4040
4049
.
2.
Tiwari
,
R.
,
Bordoloi
,
D. J.
, and
Dewangan
,
A.
,
2021
, “
Blockage and Cavitation Detection in Centrifugal Pumps From Dynamic Pressure Signal Using Deep Learning Algorithm
,”
Measurement
,
173
, p.
108676
.
3.
Ranawat
,
N. S.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2022
, “
Performance of Centrifugal Pump Over a Range of Composite Wear Ring Clearance
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
11
), p.
524
.
4.
Pradhan
,
P. K.
,
Roy
,
S. K.
, and
Mohanty
,
A. R.
,
2020
, “
Detection of Broken Impeller in Submersible Pump by Estimation of Rotational Frequency From Motor Current Signal
,”
J. Vib. Eng. Technol.
,
8
(
4
), pp.
613
620
.
5.
Kumar
,
Anil
, and
Kumar
,
Rajesh
,
2017
, “
Time-Frequency Analysis and Support Vector Machine in Automatic Detection of Defect From Vibration Signal of Centrifugal Pump
,”
Measurement
,
108
, pp.
119
133
.
6.
Kumar
,
D.
,
Dewangan
,
A.
,
Tiwari
,
R.
, and
Bordoloi
,
D. J.
,
2021
, “
Identification of Inlet Pipe Blockage Level in Centrifugal Pump Over a Range of Speeds by Deep Learning Algorithm Using Multi-Source Data
,”
Measurement
,
186
, p.
110146
.
7.
Panda
,
A. K.
,
Rapur
,
J. S.
, and
Tiwari
,
R.
,
2018
, “
Prediction of Flow Blockages and Impending Cavitation in Centrifugal Pumps Using Support Vector Machine (SVM) Algorithms Based on Vibration Measurements
,”
Measurement
,
130
, pp.
44
56
.
8.
Ranawat
,
N. S.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2020
, “
Fault Diagnosis in Centrifugal Pump Using Support Vector Machine and Artificial Neural Network
,”
J. Eng. Res. EMSME Spec. Issue
,
2020
(
Special Issue
), pp.
99
111
.
9.
Prakash
,
J.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Internal Leakage Detection in Hydraulic Pump Using Model-Agnostic Feature Ranking and Ensemble Classifiers
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041005
.
10.
Lin
,
M.
,
Shan
,
M.
,
Zhou
,
J.
, and
Pan
,
Y.
,
2022
, “
A Data-Driven Fault Diagnosis Method Using Modified Health Index and Deep Neural Networks of a Rolling Bearing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021005
.
11.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Internal Leakage Detection in a Hydraulic Pump Using Exhaustive Feature Selection and Ensemble Learning
,”
Proceedings of the 2021 International Conference on Maintenance and Intelligent Asset Management, ICMIAM 2021
,
Ballarat, Australia
,
Dec. 12–15
.
12.
Ranawat
,
N. S.
,
Prakash
,
J.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Performance Evaluation of LSTM and Bi-LSTM Using non-Convolutional Features for Blockage Detection in Centrifugal Pump
,”
Eng. Appl. Artif. Intell.
,
122
, p.
106092
.
13.
Wolfram
,
A.
,
Füssel
,
D.
,
Brune
,
T.
, and
Isermann
,
R.
,
2001
, “
Component-Based Multi-Model Approach for Fault Detection and Diagnosis of a Centrifugal Pump
,”
Proceedings of the American Control Conference
,
Arlington, VA
,
June 25–27
, pp.
4443
4448
.
14.
Dutta
,
A.
,
Karimi
,
I. A.
, and
Farooq
,
S.
,
2022
, “
PROAD (Process Advisor): A Health Monitoring Framework for Centrifugal Pumps
,”
Comput. Chem. Eng.
,
163
, p.
107825
.
15.
Rapur
,
J. S.
, and
Tiwari
,
R.
,
2019
, “
Multifault Diagnosis of Combined Hydraulic and Mechanical Centrifugal Pump Faults Using Continuous Wavelet Transform and Support Vector Machines
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
11
), p.
111013
.
16.
Gilet
,
D. S.
, and
Lodal
,
P. N.
,
2001
, “
Case Histories of Pump Explosions While Running Isolated
,”
Process Saf. Prog.
,
20
(
2
), pp.
152
156
.
17.
O'Connor
,
B.P.
, and
Platinum
,
Anglo
,
2002
, “
Centrifugal Pump Explosions
,”
The South African Institute of Mining and Metallurgy
,
102
(
2
), pp.
1
19
.
18.
Ranawat
,
N. S.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Blockage Detection in Centrifugal Pump Using Butterfly Optimization-Based Feature Selection
,”
MAPAN
,
12
, pp.
1
11
.
19.
Hasan
,
M. J.
,
Rai
,
A.
,
Ahmad
,
Z.
, and
Kim
,
J. M.
,
2021
, “
A Fault Diagnosis Framework for Centrifugal Pumps by Scalogram-Based Imaging and Deep Learning
,”
IEEE Access
,
9
, pp.
58052
58066
.
20.
He
,
B.
,
Xu
,
F.
,
Zhang
,
D.
, and
Wang
,
W.
,
2022
, “
A Convolutional Neural Network-Based Recognition Method of Gear Performance Degradation Mode
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050902
.
21.
Yu
,
X.
,
Wang
,
J.
,
Hong
,
Q. Q.
,
Teku
,
R.
,
Wang
,
S. H.
, and
Zhang
,
Y. D.
,
2022
, “
Transfer Learning for Medical Images Analyses: A Survey
,”
Neurocomputing
,
489
, pp.
230
254
.
22.
Meng
,
Z.
,
Zhao
,
Z.
,
Zhu
,
B.
, and
Fan
,
F.
,
2022
, “
Online Diagnosis for Rolling Bearings Based on Multi-Channel Convolution and Transfer Learning
,”
Meas. Sci. Technol.
,
33
(
11
), p.
115116
.
23.
Manjunatha
,
H.
,
Jujjavarapu
,
S. S.
, and
Esfahani
,
E. T.
,
2022
, “
Transfer Learning of Motor Difficulty Classification in Physical Human–Robot Interaction Using Electromyography
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050908
.
24.
Ma
,
P.
,
Zhang
,
H.
,
Fan
,
W.
,
Wang
,
C.
,
Wen
,
G.
, and
Zhang
,
X.
,
2019
, “
A Novel Bearing Fault Diagnosis Method Based on 2D Image Representation and Transfer Learning-Convolutional Neural Network
,”
Meas. Sci. Technol.
,
30
(
5
), p.
055402
.
25.
Wen
,
L.
,
Li
,
X.
,
Li
,
X.
, and
Gao
,
L.
,
2019
, “
A new Transfer Learning Based on VGG-19 Network for Fault Diagnosis
,”
Proceedings of the 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design, CSCWD 2019
,
Porto, Portugal
,
May 6–8
, Institute of Electrical and Electronics Engineers Inc., pp.
205
209
.
26.
Shang
,
Z.
,
Zhang
,
J.
,
Li
,
W.
,
Qian
,
S.
, and
Gao
,
M.
,
2022
, “
A Domain Adversarial Transfer Model With Inception and Attention Network for Rolling Bearing Fault Diagnosis Under Variable Operating Conditions
,”
J. Vib. Eng. Technol.
,
2022
, pp.
1
17
.
27.
Attallah
,
O.
,
Ibrahim
,
R. A.
, and
Zakzouk
,
N. E.
,
2022
, “
Fault Diagnosis for Induction Generator-Based Wind Turbine Using Ensemble Deep Learning Techniques
,”
Energy Rep.
,
8
, pp.
12787
12798
.
28.
Chakrapani
,
G.
, and
Sugumaran
,
V.
,
2023
, “
Transfer Learning-Based Fault Diagnosis of Automobile Dry Clutch System
,”
Eng. Appl. Artif. Intell.
,
117
, p.
105522
.
29.
Islam
,
M. R.
,
Moni
,
M. A.
,
Islam
,
M. M.
,
Rashed-Al-Mahfuz
,
M.
,
Islam
,
M. S.
,
Hasan
,
M. K.
,
Hossain
,
M. S.
, et al.
,
2021
, “
Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques
,”
IEEE Access
,
9
, pp.
94601
94624
.
30.
Impedovo
,
D.
,
Dentamaro
,
V.
,
Abbattista
,
G.
,
Gattulli
,
V.
, and
Pirlo
,
G.
,
2021
, “
A Comparative Study of Shallow Learning and Deep Transfer Learning Techniques for Accurate Fingerprints Vitality Detection
,”
Pattern Recognit. Lett.
,
151
, pp.
11
18
.
31.
Konovalenko
,
I.
,
Maruschak
,
P.
,
Brevus
,
V.
, and
Prentkovskis
,
O.
,
2021
, “
Recognition of Scratches and Abrasions on Metal Surfaces Using a Classifier Based on a Convolutional Neural Network
,”
Metals (Basel)
,
11
(
4
), p.
549
.
32.
Konovalenko
,
I.
,
Maruschak
,
P.
,
Kozbur
,
H.
,
Brezinová
,
J.
,
Brezina
,
J.
, and
Guzanová
,
A.
,
2021
, “
Defectoscopic and Geometric Features of Defects That Occur in Sheet Metal and Their Description Based on Statistical Analysis
,”
Metals (Basel)
,
11
(
11
), p.
1851
.
33.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Monitoring the Degradation in the Switching Behavior of a Hydraulic Valve Using Recurrence Quantification Analysis and Fractal Dimensions
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
061010
.
34.
Pham
,
T. D.
,
2020
, “
Fuzzy Cross and Fuzzy Joint Recurrence Plots
,”
Phys. A: Stat. Mech. Appl.
,
540
, p.
123026
.
35.
Cantürk
,
İ
,
2021
, “
Fuzzy Recurrence Plot-Based Analysis of Dynamic and Static Spiral Tests of Parkinson’s Disease Patients
,”
Neural Comput. Appl.
,
33
(
1
), pp.
349
360
.
36.
Xin-lei
,
G.
,
Kai-lin
,
Y.
, and
Yong-xin
,
G.
,
2008
, “
Hydraulic Pressure Signal Denoising Using Threshold Self-Learning Wavelet Algorithm
,”
J. Hydrodyn. Ser. B
,
20
(
4
), pp.
433
439
.
37.
Wendi
,
D.
, and
Marwan
,
N.
,
2018
, “
Extended Recurrence Plot and Quantification for Noisy Continuous Dynamical Systems
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
28
(
8
), p.
085722
.
38.
Liu
,
T.
,
Luo
,
Z.
,
Huang
,
J.
, and
Yan
,
S.
,
2018
, “
A Comparative Study of Four Kinds of Adaptive Decomposition Algorithms and Their Applications
,”
Sensors
,
18
(
7
), p.
2120
.
39.
Minhas
,
A. S.
,
Kankar
,
P. K.
,
Kumar
,
N.
, and
Singh
,
S.
,
2021
, “
Bearing Fault Detection and Recognition Methodology Based on Weighted Multiscale Entropy Approach
,”
Mech. Syst. Signal Process.
,
147
, p.
107073
.
40.
Marwan
,
N.
,
Carmen Romano
,
M.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6)
, pp.
237
329
.
41.
Pham
,
T. D.
,
2016
, “
Fuzzy Recurrence Plots
,”
EPL (Europhys. Lett.)
,
116
(
5
), p.
50008
.
42.
Pham
,
T. D.
,
2022
, “
Quantification Analysis of Fuzzy Recurrence Plots
,”
Europhys. Lett.
,
137
(
6
), p.
62002
.
43.
Chen
,
J.
,
Wang
,
H.
,
Wang
,
S.
,
He
,
E.
,
Zhang
,
T.
, and
Wang
,
L.
,
2022
, “
Convolutional Neural Network With Transfer Learning Approach for Detection of Unfavorable Driving State Using Phase Coherence Image
,”
Expert Syst. Appl.
,
187
, p.
116016
.
44.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Rolling Element Bearing Fault Diagnosis Using Wavelet Transform
,”
Neurocomputing.
,
74
(
10
), pp.
1638
1645
.
45.
Dagher
,
I.
,
2008
, “
Quadratic Kernel-Free non-Linear Support Vector Machine
,”
J. Glob. Optim.
,
41
(
1
), pp.
15
30
.
46.
Zhang
,
S.
,
Cheng
,
D.
,
Deng
,
Z.
,
Zong
,
M.
, and
Deng
,
X.
,
2018
, “
A Novel kNN Algorithm With Data-Driven k Parameter Computation
,”
Pattern Recognit. Lett.
,
109
, pp.
44
54
.
47.
Gunerkar
,
R. S.
,
Jalan
,
A. K.
, and
Belgamwar
,
S. U.
,
2019
, “
Fault Diagnosis of Rolling Element Bearing Based on Artificial Neural Network
,”
J. Mech. Sci. Technol.
,
33
(
2
), pp.
505
511
.
48.
Geler
,
Z.
,
Kurbalija
,
V.
,
Ivanović
,
M.
, and
Radovanović
,
M.
,
2020
, “
Weighted kNN and Constrained Elastic Distances for Time-Series Classification
,”
Expert Syst. Appl.
,
162
, p.
113829
.
49.
Khan
,
M. U.
,
Samer
,
S.
,
Alshehri
,
M. D.
,
Baloch
,
N. K.
,
Khan
,
H.
,
Hussain
,
F.
,
Kim
,
S. W.
, and
Zikria
,
Y. B.
,
2022
, “
Artificial Neural Network-Based Cardiovascular Disease Prediction Using Spectral Features
,”
Comput. Electr. Eng.
,
101
, p.
108094
.
50.
Ashour
,
A. S.
,
Guo
,
Y.
,
Hawas
,
A. R.
, and
Xu
,
G.
,
2018
, “
Ensemble of Subspace Discriminant Classifiers for Schistosomal Liver Fibrosis Staging in Mice Microscopic Images
,”
Health Inf. Sci. Syst.
,
6
(
1
), pp.
1
10
.
51.
Sun
,
L.
,
Chen
,
J.
,
Xie
,
K.
, and
Gu
,
T.
,
2018
, “
Deep and Shallow Features Fusion Based on Deep Convolutional Neural Network for Speech Emotion Recognition
,”
Int. J. Speech Technol.
,
21
(
4
), pp.
931
940
.
52.
Zhang
,
W.
,
Deng
,
L.
,
Zhang
,
L.
, and
Wu
,
D.
,
2020
, “
A Survey on Negative Transfer
,”
IEEE/CAA J. Autom.
,
10
(
2
), pp.
305
329
.
53.
Li
,
Y.
,
Liu
,
B.
,
Yu
,
Y.
,
Li
,
H.
,
Sun
,
J.
, and
Cui
,
J.
,
2021
, “
3E-LDA: Three Enhancements to Linear Discriminant Analysis
,”
ACM Trans. Knowl. Discov. Data
,
15
(
4
), pp.
1
20
.
54.
Rapur
,
J. S.
, and
Tiwari
,
R.
,
2018
, “
Automation of Multi-Fault Diagnosing of Centrifugal Pumps Using Multi-Class Support Vector Machine With Vibration and Motor Current Signals in Frequency Domain
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
6
), pp.
1
21
.
55.
Gonçalves
,
J. P. S.
,
Fruett
,
F.
,
Dalfré Filho
,
J. G.
, and
Giesbrecht
,
M.
,
2021
, “
Faults Detection and Classification in a Centrifugal Pump From Vibration Data Using Markov Parameters
,”
Mech. Syst. Signal Process.
,
158
, p.
107694
.
You do not currently have access to this content.