Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The design of complex systems often requires the incorporation of uncertainty optimization strategies to mitigate system failures resulting from multiple uncertainties during actual operation. Risk-based design optimization, as an alternative methodology that accounts for the balance between design cost and performance, has garnered significant attention and recognition. This paper presents a risk design optimization method for tackling hybrid uncertainties via scenario generation and genetic programming. The hybrid uncertainties are quantified through the scenario generation method to obtain risk assessment indicators. The genetic programming method is used to simulate the real output of the objective or constraints. To drive the optimization process, the sample-based discrete gradient expression is constructed, and the optimal scheme aligning the risk requirements is obtained. Three calculation examples of varying computing complexity are presented to verify the efficacy and usability of the suggested approach.

References

1.
Cheema
,
P.
,
Mathews
,
G.
, and
Vio
,
G. A.
,
2018
, “
Bayesian Inferencing on an Aircraft T-Tail Using Probabilistic Surrogates and Uncertainty Quantification
,”
AIAA J.
,
56
(
3
), pp.
1185
1197
.
2.
Li
,
W.
,
Xiao
,
M.
,
Yi
,
Y. S.
, and
Gao
,
L.
,
2019
, “
Maximum Variation Analysis Based Analytical Target Cascading for Multidisciplinary Robust Design Optimization Under Interval Uncertainty
,”
Adv. Eng. Inform.
,
40
, pp.
81
92
.
3.
Wan
,
J. M.
,
Che
,
Y. M.
,
Wang
,
Z. M.
, and
Cheng
,
C. Q.
,
2023
, “
Uncertainty Quantification and Optimal Robust Design for Machining Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011005
.
4.
Han
,
X.
,
Jiang
,
C.
,
Liu
,
L. X.
,
Liu
,
J.
, and
Long
,
X. Y.
,
2014
, “
Response-Surface-Based Structural Reliability Analysis With Random and Interval Mixed Uncertainties
,”
Sci. China Technol. Sci.
,
57
(
7
), pp.
1322
1334
.
5.
Minguez
,
R.
, and
Castillo
,
E.
,
2009
, “
Reliability-Based Optimization in Engineering Using Decomposition Techniques and FORMS
,”
Struct. Saf.
,
31
(
3
), pp.
214
223
.
6.
Aoues
,
Y.
, and
Chateauneuf
,
A.
,
2010
, “
Benchmark Study of Numerical Methods for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
277
294
.
7.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2022
, “
Multidisciplinary Robust Design Optimization Considering Parameter and Metamodeling Uncertainties
,”
Eng. Comput.
,
38
(
1
), pp.
191
208
.
8.
Li
,
W.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
Improved Collaboration Pursuing Method for Multidisciplinary Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
59
(
6
), pp.
1949
1968
.
9.
Nerenst
,
T. B.
,
Ebro
,
M.
,
Nielsen
,
M.
,
Bhadani
,
K.
,
Asbjornsson
,
G.
,
Eifler
,
T.
, and
Nielsen
,
K. L.
,
2022
, “
Sequential Design Process for Screening and Optimization of Robustness and Reliability Based on Finite Element Analysis and Meta-Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040902
.
10.
Beyer
,
H. G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization – A Comprehensive Survey
,”
Comput. Method. Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
11.
Schueller
,
G. I.
, and
Jensen
,
H. A.
,
2008
, “
Computational Methods in Optimization Considering Uncertainties—An Overview
,”
Comput. Method. Appl. Mech. Eng.
,
198
(
1
), pp.
2
13
.
12.
Valdebenito
,
M. A.
, and
Schueller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
645
663
.
13.
Rockafellar
,
R. T.
, and
Uryasev
,
S.
,
2000
, “
Optimization of Conditional Value-at-Risk
,”
J. Risk
,
2
(
3
), pp.
21
42
.
14.
Hong
,
L. J.
,
Hu
,
Z. L.
, and
Liu
,
G. W.
,
2014
, “
Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review
,”
ACM Trans. Model. Comput. Simul.
,
24
(
4
), pp.
1
37
.
15.
Yu
,
X. B.
, and
Zheng
,
D. D.
,
2020
, “
Cross-Regional Integrated Energy System Scheduling Optimization Model Considering Conditional Value at Risk
,”
Int. J. Energ. Res.
,
44
(
7
), pp.
5564
5581
.
16.
Sehgal
,
R.
, and
Mehra
,
A.
,
2020
, “
Robust Portfolio Optimization With Second Order Stochastic Dominance Constraints
,”
Comput. Ind. Eng.
,
144
, p.
106672
.
17.
Lim
,
G. J.
,
Kardar
,
L.
,
Ebrahimi
,
S.
, and
Cao
,
W. H.
,
2020
, “
A Risk-Based Modeling Approach for Radiation Therapy Treatment Planning Under Tumor Shrinkage Uncertainty
,”
Eur. J. Oper. Res.
,
280
(
1
), pp.
266
278
.
18.
Beck
,
A. T.
, and
Gomes
,
W. J. D.
,
2012
, “
A Comparison of Deterministic, Reliability-Based and Risk-Based Structural Optimization Under Uncertainty
,”
Probabilist. Eng. Mech.
,
28
, pp.
18
29
.
19.
Li
,
W.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2021
, “
A New Approach to Solve Uncertain Multidisciplinary Design Optimization Based on Conditional Value at Risk
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
1
), pp.
356
368
.
20.
Li
,
W.
,
Li
,
C. B.
,
Gao
,
L.
, and
Xiao
,
M.
,
2022
, “
Risk-Based Design Optimization Under Hybrid Uncertainties
,”
Eng. Comput.
,
38
(
3
), pp.
2037
2049
.
21.
Wang
,
J. Q.
,
Wang
,
Q. L.
,
Qiu
,
J. R.
,
Wang
,
J.
,
Wang
,
F.
, and
Li
,
Y. Z.
,
2023
, “
Risk-Informed Design Optimization Method and Application in a Lead-Based Research Reactor
,”
Nucl. Eng. Technol.
,
55
(
6
), pp.
2047
2052
.
22.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2019
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Comput. Method. Eng.
,
26
(
1
), pp.
245
274
.
23.
Garg
,
A.
,
Gao
,
L.
,
Li
,
W.
,
Singh
,
S.
,
Peng
,
X. B.
,
Cui
,
X. J.
,
Fan
,
Z.
,
Singh
,
H.
, and
Chin
,
C. M. M.
,
2019
, “
Evolutionary Framework Design in Formulation of Decision Support Models for Production Emissions and Net Profit of Firm: Implications on Environmental Concerns of Supply Chains
,”
J. Cleaner Prod.
,
231
, pp.
1136
1148
.
24.
Li
,
Y. S.
,
Li
,
C. B.
,
Garg
,
A.
,
Gao
,
L.
, and
Li
,
W.
,
2021
, “
Heat Dissipation Analysis and Multi-Objective Optimization of a Permanent Magnet Synchronous Motor Using Surrogate Assisted Method
,”
Case Stud. Therm. Eng.
,
27
, p.
100884
.
25.
Perrone
,
V.
,
Shcherbatyi
,
I.
,
Jenatton
,
R.
,
Archambeau
,
C.
, and
Seeger
,
M
.,
2019
, “
Constrained Bayesian Optimization With Max-Value Entropy Search
,” .
26.
Letham
,
B.
,
Karrer
,
B.
,
Ottoni
,
G.
, and
Bakshy
,
E.
,
2019
, “
Constrained Bayesian Optimization With Noisy Experiments
,”
Bayesian Anal.
,
14
(
2
), pp.
495
519
.
27.
Abdolshah
,
M.
,
Shilton
,
A.
,
Rana
,
S.
,
Gupta
,
S.
, and
Venkatesh
,
S.
,
2018
, “
Expected Hypervolume Improvement With Constraints
,”
24th International Conference on Pattern Recognition (ICPR)
,
Beijing, China
,
Aug. 20–24
,
IEEE
, pp.
3238
3243
.
28.
Yin
,
S.
,
Jin
,
X.
,
Shi
,
L.
,
Wang
,
K.
, and
Xing
,
W. W.
,
2022
, “
Efficient Bayesian Yield Analysis and Optimization With Active Learning
,”
59th ACM/IEEE Design Automation Conference
,
San Francisco, CA
,
July 10–14
, pp.
1195
1200
.
29.
Razzaq
,
L.
,
Abbas
,
M. M.
,
Miran
,
S.
,
Asghar
,
S.
,
Nawaz
,
S.
,
Soudagar
,
M. E. M.
,
Shaukat
,
N.
, et al
,
2022
, “
Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced From Mixture of Palm and Cotton Seed Oil
,”
Sustainability (Basel)
,
14
(
10
), p.
6130
.
30.
Su
,
S. S.
,
Chen
,
D. Z.
,
Srinivasan
,
K.
,
Chen
,
B. Y.
,
Xu
,
M. J.
,
Garg
,
A.
,
Gao
,
L.
, and
Sandoval
,
J.
,
2019
, “
Experimental and Artificial Intelligence for Determination of Stable Criteria in Cyclic Voltammetric Process of Medicinal Herbs for Biofuel Cells
,”
Int. J. Energ. Res.
,
43
(
11
), pp.
5983
5991
.
31.
Garg
,
A.
,
Wei
,
L.
,
Goyal
,
A.
,
Cui
,
X. J.
, and
Gao
,
L.
,
2019
, “
Evaluation of Batteries Residual Energy for Battery Pack Recycling: Proposition of Stack Stress-Coupled-AI Approach
,”
J. Energy Storage
,
26
, p.
100895
.
32.
Koza
,
J. R.
, and
Koza
,
J. R.
,
1992
,
Genetic Programming: On the Programming of Computers by Means of Natural Selection
,
MIT Press
,
Cambridge, MA
. https://mitpress.mit.edu/9780262527910/genetic-programming/
33.
Uryasev
,
S.
,
2000
, “
Conditional Value-at-Risk: Optimization Algorithms and Applications
,”
Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)
,
New York
,
Mar. 28
,
IEEE
, pp.
49
57
.
34.
Gandomi
,
A. H.
, and
Roke
,
D. A.
,
2015
, “
Assessment of Artificial Neural Network and Genetic Programming as Predictive Tools
,”
Adv. Eng. Softw.
,
88
, pp.
63
72
.
35.
Zupancic
,
J.
,
Filipic
,
B.
, and
Gams
,
M.
,
2020
, “
Genetic-Programming-Based Multi-Objective Optimization of Strategies for Home Energy-Management Systems
,”
Energy
,
203
, p.
117769
.
36.
Kalita
,
K.
,
Mukhopadhyay
,
T.
,
Dey
,
P.
, and
Haldar
,
S.
,
2020
, “
Genetic Programming-Assisted Multi-Scale Optimization for Multi-Objective Dynamic Performance of Laminated Composites: The Advantage of More Elementary-Level Analyses
,”
Neural Comput. Appl.
,
32
(
12
), pp.
7969
7993
.
37.
Gandomi
,
A. H.
,
Alavi
,
A. H.
, and
Ryan
,
C.
,
2015
,
Handbook of Genetic Programming Applications
,
Springer
,
Switzerland
.
38.
Gu
,
Z.
,
Hou
,
X.
, and
Ye
,
J.
,
2021
, “
Design and Analysis Method of Nonlinear Helical Springs Using a Combining Technique: Finite Element Analysis, Constrained Latin Hypercube Sampling, and Genetic Programming
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
235
(
22
), pp.
5917
5930
.
39.
Garg
,
A.
,
Su
,
S.
,
Li
,
F.
, and
Gao
,
L.
,
2020
, “
Framework of Model Selection Criteria Approximated Genetic Programming for Optimization Function for Renewable Energy Systems
,”
Swarm Evol. Comput.
,
59
, p.
100750
.
40.
Zojaji
,
Z.
,
Ebadzadeh
,
M. M.
, and
Nasiri
,
H.
,
2022
, “
Semantic Schema Based Genetic Programming for Symbolic Regression
,”
Appl. Soft Comput.
,
122
, p.
108825
.
41.
Zhou
,
J. H.
, and
Li
,
M.
,
2014
, “
Advanced Robust Optimization With Interval Uncertainty Using a Single-Looped Structure and Sequential Quadratic Programming
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021002
.
42.
Du
,
X. P.
,
Venigella
,
P. K.
, and
Liu
,
D. S.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.
43.
Hu
,
N. G.
, and
Duan
,
B. Y.
,
2018
, “
An Efficient Robust Optimization Method With Random and Interval Uncertainties
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
229
243
.
44.
Li
,
W.
,
Peng
,
X. B.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energ. Res.
,
43
(
8
), pp.
3668
3680
.
45.
Li
,
W.
,
Wang
,
N. B.
,
Garg
,
A.
, and
Gao
,
L.
,
2023
, “
Multi-Objective Optimization of an Air Cooling Battery Thermal Management System Considering Battery Degradation and Parasitic Power Loss
,”
J. Energy Storage
,
58
, p.
102425
.
46.
Li
,
W.
,
Jishnu
,
A. K.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X. B.
, and
Gao
,
L.
,
2020
, “
Heat Transfer Efficiency Enhancement of Lithium-Ion Battery Packs by Using Novel Design of Herringbone Fins
,”
J. Electrochem. Energy
,
17
(
2
), p.
031009
.
You do not currently have access to this content.