Abstract

A paradigm shift in the computational design synthesis (CDS) domain is being witnessed by the onset of the innovative usage of machine learning techniques. The rapidly evolving paradigmatic shift calls for systematic and comprehensive assimilation of extant knowledge at the intersection of machine learning and computational design synthesis. Understanding nuances, identifying research gaps, and outlining the future direction for cutting-edge research is imperative. This article outlines a hybrid literature review consisting of a thematic and framework synthesis survey to enable conceptual synthesis of information at the convergence of computational design, machine learning, and big data models. The thematic literature survey aims at conducting an in-depth descriptive survey along the lines of a broader theme of machine learning in computational design. The framework synthesis-based survey tries to encapsulate the research findings in a conceptual framework to understand the domain better. The framework is based on the CDS process, which consists of four submodules: representation, generation, evaluation, and guidance. Each submodule has undergone an analysis to identify potential research gaps and formulate research questions. In addition, we consider the limitations of our study and pinpoint the realms where the research can be extended in the future.

References

1.
Adeli
,
H.
,
1994
,
Advances in Design Optimization
,
CRC Press
,
London, UK
.
2.
Arora
,
J. S.
,
1990
, “
Computational Design Optimization: A Review and Future Directions
,”
Struct. Saf.
,
7
(
2–4
), pp.
131
148
.
3.
Arora
,
J.
,
2004
,
Introduction to Optimum Design
,
Elsevier
,
San Diego, CA
.
4.
Dieter
,
G. E.
, and
Schmidt
,
L. C.
,
2009
,
Engineering Design
, Vol.
4
,
McGraw-Hill Higher Education
,
Boston, MA
.
5.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
6.
He
,
B.
,
Song
,
W.
, and
Wang
,
Y.
,
2015
, “
Computational Conceptual Design Using Space Matrix
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011004
.
7.
Kurtoglu
,
T.
,
Swantner
,
A.
, and
Campbell
,
M. I.
,
2010
, “
Automating the Conceptual Design Process: From Black Box to Component Selection
,”
AI EDAM
,
24
(
1
), pp.
49
62
.
8.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.
9.
Gadeyne
,
K.
,
Pinte
,
G.
, and
Berx
,
K.
,
2014
, “
Describing the Design Space of Mechanical Computational Design Synthesis Problems
,”
Adv. Eng. Inform.
,
28
(
3
), pp.
198
207
.
10.
Shneiderman
,
B.
,
Plaisant
,
C.
,
Cohen
,
M. S.
,
Jacobs
,
S.
,
Elmqvist
,
N.
, and
Diakopoulos
,
N.
,
2016
,
Designing the User Interface: Strategies for Effective Human-Computer Interaction
,
Pearson
,
Chennai, India
.
11.
Shneiderman
,
B.
,
2000
, “
Creating Creativity: User Interfaces for Supporting Innovation
,”
ACM Trans. Comput.-Hum. Interact.
,
7
(
1
), pp.
114
138
.
12.
Hagedorn
,
T. J.
,
Krishnamurty
,
S.
, and
Grosse
,
I. R.
,
2018
, “
A Knowledge-Based Method for Innovative Design for Additive Manufacturing Supported by Modular Ontologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021009
.
13.
Winston
,
P. H.
,
1992
,
Artificial Intelligence
,
Addison-Wesley Longman Publishing Co. Inc
,
Boston, MA
.
14.
Zhou
,
Z.-H.
,
2021
,
Machine Learning
,
Springer Nature
,
Singapore
.
15.
Puentes
,
L.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Heuristic-Guided Solution Search Through a Two-Tiered Design Grammar
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011008
.
16.
Winston
,
W. L.
,
Venkataramanan
,
M.
, and
Goldberg
,
J. B.
,
2003
,
Introduction to Mathematical Programming
, Vol.
1
,
Thomson/Brooks/Cole Duxbury
,
Pacific Grove, CA
.
17.
Preparata
,
F. P.
, and
Shamos
,
M. I.
,
2012
,
Computational Geometry: An Introduction
,
Springer Science & Business Media
,
New York
.
18.
Cross
,
N.
,
2021
,
Engineering Design Methods: Strategies for Product Design
,
John Wiley & Sons
,
Hoboken, NJ
.
19.
Stillings
,
N. A.
,
Chase
,
C. H.
,
Weisler
,
S. E.
,
Feinstein
,
M. H.
,
Garfield
,
J. L.
, and
Rissland
,
E. L.
,
1995
,
Cognitive Science: An Introduction
,
MIT Press
,
Cambridge, MA
.
20.
Crossman
,
D. E.
,
1996
,
A Study of Certain Personality Factors, Perceived Participativeness and Success Levels of NASA Project Managers
,
The George Washington University
,
Washington, DC
.
21.
Campbell
,
M. I.
, and
Rai
,
R.
,
2003
, “
A Generalization of Computational Synthesis Methods in Engineering Design
,”
AAAI Spring Symposium Series
,
Palo Alto, CA
,
Mar. 24–26
, pp.
26
28
.
22.
Carroll
,
C.
,
Booth
,
A.
,
Leaviss
,
J.
, and
Rick
,
J.
,
2013
, “
‘Best Fit’ Framework Synthesis: Refining the Method
,”
BMC Med. Res. Methodol.
,
13
(
1
), pp.
1
16
.
23.
Dixon-Woods
,
M.
,
2011
, “
Using Framework-Based Synthesis for Conducting Reviews of Qualitative Studies
,”
BMC Medicine
,
9
(
1
), pp.
1
2
.
24.
Simpson
,
T.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come-or Not
,”
12th AIAA/ISSMO multidisciplinary analysis and optimization conference
,
Victoria, British Colombia, Canada
,
Sept. 10–12
, p.
5802
.
25.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
26.
Rao
,
R. V.
, and
Savsani
,
V. J.
,
2012
,
Advanced Optimization Techniques
,
Springer
,
Berlin, Germany
.
27.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
28.
Gero
,
J.
,
2012
,
Design Optimization
,
Elsevier
,
Orlando, FL
.
29.
Bunnell
,
S.
,
Gorrell
,
S.
,
Salmon
,
J.
,
Thelin
,
C.
, and
Ruoti
,
C.
,
2020
, “
Structural Design Space Exploration Using Principal Component Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061014
.
30.
Dering
,
M. L.
,
Tucker
,
C. S.
, and
Kumara
,
S.
,
2018
, “
An Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011002
.
31.
Kamath
,
U.
,
Liu
,
J.
, and
Whitaker
,
J.
,
2019
,
Deep Learning for NLP and Speech Recognition
, Vol.
84
,
Springer
,
Switzerland
.
32.
Doreswamy
,
H.
,
2011
, “
Linear Regression Model for Knowledge Discovery in Engineering Materials
,” CS & IT Conference Proceedings, Vol.
1
, pp.
147
156
.
33.
Asadi
,
S.
,
Amiri
,
S. S.
, and
Mottahedi
,
M.
,
2014
, “
On the Development of Multi-linear Regression Analysis to Assess Energy Consumption in the Early Stages of Building Design
,”
Energy Build.
,
85
, pp.
246
255
.
34.
Zheng
,
Z.
,
Zhao
,
J.
, and
Wang
,
L.
,
2021
, “
Optimization Design of Pmslm Based on Lasso Regression With Embedded Analytical Model
,”
2021 13th International Symposium on Linear Drives for Industry Applications (LDIA)
,
Wuhan, China
,
July 1–3
, IEEE, pp.
1
5
.
35.
Menon
,
A.
,
Póczos
,
B.
,
Feinberg
,
A. W.
, and
Washburn
,
N. R.
,
2019
, “
Optimization of Silicone 3D Printing With Hierarchical Machine Learning
,”
3D Printing Additive Manuf.
,
6
(
4
), pp.
181
189
.
36.
Lee
,
Y.
,
Oh
,
S.
, and
Choi
,
D.-H.
,
2008
, “
Design Optimization Using Support Vector Regression
,”
J. Mech. Sci. Technol.
,
22
(
2
), pp.
213
220
.
37.
Zhu
,
P.
,
Pan
,
F.
,
Chen
,
W.
, and
Zhang
,
S.
,
2012
, “
Use of Support Vector Regression in Structural Optimization: Application to Vehicle Crashworthiness Design
,”
Math. Comput. Simul.
,
86
, pp.
21
31
.
38.
Zhuang
,
D.
,
Ma
,
K.
,
Tang
,
C.
,
Liang
,
Z.
,
Wang
,
K.
, and
Wang
,
Z.
,
2019
, “
Mechanical Parameter Inversion in Tunnel Engineering Using Support Vector Regression Optimized by Multi-Strategy Artificial Fish Swarm Algorithm
,”
Tunnelling Underground Space Technol.
,
83
, pp.
425
436
.
39.
Dabiri
,
H.
,
Farhangi
,
V.
,
Moradi
,
M. J.
,
Zadehmohamad
,
M.
, and
Karakouzian
,
M.
,
2022
, “
Applications of Decision Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars
,”
Appl. Sci.
,
12
(
10
), p.
4851
.
40.
Dasari
,
S. K.
,
Cheddad
,
A.
, and
Andersson
,
P.
,
2019
, “
Random Forest Surrogate Models to Support Design Space Exploration in Aerospace Use-Case
,”
Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International Conference, AIAI 2019
,
Hersonissos, Crete, Greece
,
Springer
, pp.
532
544
.
41.
Ma
,
H.
,
Liu
,
J.
,
Zhang
,
J.
, and
Huang
,
J.
,
2021
, “
Estimating the Compressive Strength of Cement-Based Materials With Mining Waste Using Support Vector Machine, Decision Tree, and Random Forest Models
,”
Adv. Civil Eng.
,
2021
, p.
6629466
.
42.
Ferrero
,
V. J.
,
Alqseer
,
N.
,
Tensa
,
M.
, and
DuPont
,
B.
,
2020
, “
Using Decision Trees Supported by Data Mining to Improve Function-Based Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
, Vol. 84003, American Society of Mechanical Engineers, p. V11AT11A018.
43.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
44.
Rosenblatt
,
F.
,
1958
, “
The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
,”
Psychol. Rev.
,
65
(
6
), p.
386
.
45.
Krogh
,
A.
,
2008
, “
What Are Artificial Neural Networks
?”
Nat. Biotechnol.
,
26
(
2
), pp.
195
197
.
46.
Anderson
,
J. A.
,
1995
,
An Introduction to Neural Networks
,
MIT Press
,
Cambridge, MA
.
47.
Yegnanarayana
,
B.
,
2009
,
Artificial Neural Networks
,
PHI Learning Pvt. Ltd
,
Delhi, India
.
48.
Russell
,
S.
, and
Norvig
,
P.
,
2010
,
Artificial Intelligence-A Modern Approach
,
Elsevier
,
Amsterdam, Netherlands
.
49.
Ramchoun
,
H.
,
Ghanou
,
Y.
,
Ettaouil
,
M.
, and
Janati Idrissi
,
M. A.
,
2016
, “
Multilayer Perceptron: Architecture Optimization and Training
,”
Int. J. Interact. Multi. Artifi. Intell.
,
4
(
1
), pp.
26
30
.
50.
Gorguluarslan
,
R. M.
,
Ates
,
G. C.
,
Utku Gungor
,
O.
, and
Yamaner
,
Y.
,
2022
, “
Strut Diameter Uncertainty Prediction by Deep Neural Network for Additively Manufactured Lattice Structures
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031001
.
51.
Rojas
,
R.
,
1996
, “The Backpropagation Algorithm,”
Neural Networks
, 1st ed.,
Springer
,
Berlin/Heidelberg
, pp.
149
182
.
52.
Baldi
,
P.
,
1995
, “
Gradient Descent Learning Algorithm Overview: A General Dynamical Systems Perspective
,”
IEEE Trans. Neural Netw.
,
6
(
1
), pp.
182
195
.
53.
Wang
,
Y.
,
Mo
,
D. Y.
, and
Tseng
,
M. M.
,
2018
, “
Mapping Customer Needs to Design Parameters in the Front End of Product Design by Applying Deep Learning
,”
CIRP. Ann.
,
67
(
1
), pp.
145
148
.
54.
Purwar
,
A.
, and
Chakraborty
,
N.
,
2023
, “
Deep Learning-Driven Design of Robot Mechanisms
,”
J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060811
.
55.
Hsu
,
Y.-L.
,
Wang
,
S.-G.
, and
Yu
,
C.-C.
,
2003
, “
A Sequential Approximation Method Using Neural Networks for Engineering Design Optimization Problems
,”
Eng. Optim.
,
35
(
5
), pp.
489
511
.
56.
Ravinder
,
R.
,
Sridhara
,
K. H.
,
Bishnoi
,
S.
,
Grover
,
H. S.
,
Bauchy
,
M.
,
Jayadeva
,
Kodamana
,
H.
, and
Krishnan
,
N. A.
,
2020
, “
Deep Learning Aided Rational Design of Oxide Glasses
,”
Mater. Horiz.
,
7
(
7
), pp.
1819
1827
.
57.
Wang
,
C.
,
Fu
,
H.
,
Jiang
,
L.
,
Xue
,
D.
, and
Xie
,
J.
,
2019
, “
A Property-Oriented Design Strategy for High Performance Copper Alloys Via Machine Learning
,”
Npj Comput. Mater.
,
5
(
1
), pp.
1
8
.
58.
Fukushima
,
K.
, and
Miyake
,
S.
,
1982
, “
Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
,”
Biol. Cybern.
,
36
(
4
), pp.
267
285
.
59.
LeCun
,
Y.
,
Haffner
,
P.
,
Bottou
,
L.
, and
Bengio
,
Y.
,
1999
, “Object Recognition with Gradient-Based Learning,”
Shape, Contour and Grouping in Computer Vision
,
Springer
, Vol 1681, pp.
319
345
.
60.
Angrish
,
A.
,
Bharadwaj
,
A.
, and
Starly
,
B.
,
2021
, “
Mvcnn++: Computer-Aided Design Model Shape Classification and Retrieval Using Multi-view Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011001
.
61.
He
,
B.
,
Xu
,
F.
,
Zhang
,
D.
, and
Wang
,
W.
,
2022
, “
A Convolutional Neural Network-Based Recognition Method of Gear Performance Degradation Mode
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050902
.
62.
Ghosh
,
D.
,
Olewnik
,
A.
, and
Lewis
,
K.
,
2018
, “
Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011004
.
63.
Wikipedia
, “
Convolutional Neural Network
,” https://en.wikipedia.org/wiki/Convolutional_neural_network, Accessed November 8, 2022.
64.
Yang
,
C.
,
Kim
,
Y.
,
Ryu
,
S.
, and
Gu
,
G. X.
,
2020
, “
Prediction of Composite Microstructure Stress-Strain Curves Using Convolutional Neural Networks
,”
Mater. Des.
,
189
, p.
108509
.
65.
Balu
,
A.
,
Lore
,
K. G.
,
Young
,
G.
,
Krishnamurthy
,
A.
, and
Sarkar
,
S.
,
2016
, “
A Deep 3D Convolutional Neural Network Based Design for Manufacturability Framework
,” arXiv preprint arXiv:1612.02141.
66.
Liu
,
P.
,
Su
,
S.
,
Gao
,
X.
,
Zheng
,
H.
, and
Ma
,
Z.
,
2022
, “
Defect Detection for Mechanical Design Products With Faster R-CNN Network
,”
Math. Problems Eng.
,
2022
, pp.
1
11
.
67.
Minsky
,
M.
, and
Papert
,
S.
,
1969
, “
An Introduction to Computational Geometry
,”
Cambridge Tiass., HIT
,
479
(
2
), p.
480
.
68.
Lee
,
J. Y.
, and
Dernoncourt
,
F.
,
2016
, “
Sequential Short-Text Classification With Recurrent and Convolutional Neural Networks
,”
2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
,
San Diego, CA
.
69.
Cho
,
K.
,
Van Merriënboer
,
B.
,
Gulcehre
,
C.
,
Bahdanau
,
D.
,
Bougares
,
F.
,
Schwenk
,
H.
, and
Bengio
,
Y.
,
2014
, “
Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation
,”
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
,
Doha, Qatar
.
70.
Tarwani
,
K. M.
, and
Edem
,
S.
,
2017
, “
Survey on Recurrent Neural Network in Natural Language Processing
,”
Int. J. Eng. Trends Technol.
,
48
(
6
), pp.
301
304
.
71.
Rahman
,
M. H.
,
Yuan
,
S.
,
Xie
,
C.
, and
Sha
,
Z.
,
2020
, “
Predicting Human Design Decisions With Deep Recurrent Neural Network Combining Static and Dynamic Data
,”
Design Sci.
,
6
, p.
e15
.
72.
Ghavamian
,
F.
, and
Simone
,
A.
,
2019
, “
Accelerating Multiscale Finite Element Simulations of History-Dependent Materials Using a Recurrent Neural Network
,”
Comput. Methods. Appl. Mech. Eng.
,
357
, p.
112594
.
73.
Yuan
,
C.
,
Hong
,
Y.-J.
,
Lee
,
C.-C.
,
Chiang
,
K.-N.
, and
Huang
,
J.-H.
,
2019
, “
Application of Artificial and Recurrent Neural Network on the Steady-State and Transient Finite Element Modeling
,”
2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)
,
Hannover, Germany
, IEEE, pp.
1
7
.
74.
Wu
,
L.
,
Nguyen
,
V. D.
,
Kilingar
,
N. G.
, and
Noels
,
L.
,
2020
, “
A Recurrent Neural Network-Accelerated Multi-Scale Model for Elasto-Plastic Heterogeneous Materials Subjected to Random Cyclic and Non-proportional Loading Paths
,”
Comput. Methods. Appl. Mech. Eng.
,
369
, p.
113234
.
75.
Chung
,
J.
,
Gulcehre
,
C.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2014
, “
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
,”
NIPS 2014 Workshop on Deep Learning, December 2014
,
Montreal, Canada
.
76.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
77.
Bahdanau
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2014
, “
Neural Machine Translation by Jointly Learning to Align and Translate
,” arXiv preprint arXiv:1409.0473.
78.
Sharma
,
V.
,
Sharma
,
D.
, and
Anand
,
A.
,
2023
, “
Hybrid Multi-Scale Convolutional Long Short-Term Memory Network for Remaining Useful Life Prediction and Offset Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041006
.
79.
Deng
,
J.
,
Wei
,
H.
,
Lai
,
Z.
,
Gu
,
G.
,
Chen
,
Z.
,
Chen
,
L.
, and
Ding
,
L.
,
2023
, “
Spatial Transform Depthwise Over-Parameterized Convolution Recurrent Neural Network for License Plate Recognition in Complex Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011010
.
80.
Nugraha
,
R. D.
,
He
,
K.
,
Liu
,
A.
, and
Zhang
,
Z.
,
2023
, “
Short-Term Cross-Sectional Time-Series Wear Prediction by Deep Learning Approaches
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021007
.
81.
Mubarak
,
A.
,
Asmelash
,
M.
,
Azhari
,
A.
,
Haggos
,
F. Y.
, and
Mulubrhan
,
F.
,
2023
, “
Machine Health Management System Using Moving Average Feature With Bidirectional Long-Short Term Memory
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031002
.
82.
Singh
,
S. K.
,
2019
, “Hybrid Machine Learning Approach for Predictive Modeling of Complex Systems,” Ph.D. thesis,
State University of New York at Buffalo
,
Amherst, NY
.
83.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2021
, “
Encoding and Exploring Latent Design Space of Optimal Material Structures Via a Vae-lstm Model
,”
Forces Mech.
,
5
, p.
100054
.
84.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Informed Multi-LSTM Networks for Metamodeling of Nonlinear Structures
,”
Comput. Methods. Appl. Mech. Eng.
,
369
, p.
113226
.
85.
Kohar
,
C. P.
,
Greve
,
L.
,
Eller
,
T. K.
,
Connolly
,
D. S.
, and
Inal
,
K.
,
2021
, “
A Machine Learning Framework for Accelerating the Design Process Using Cae Simulations: An Application to Finite Element Analysis in Structural Crashworthiness
,”
Comput. Methods. Appl. Mech. Eng.
,
385
, p.
114008
.
86.
Greve
,
L.
, and
van de Weg
,
B. P.
,
2022
, “
Surrogate Modeling of Parametrized Finite Element Simulations With Varying Mesh Topology Using Recurrent Neural Networks
,”
Array
,
14
, p.
100137
.
87.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
88.
Yang
,
R.
,
Singh
,
S. K.
,
Tavakkoli
,
M.
,
Amiri
,
N.
,
Yang
,
Y.
,
Karami
,
M. A.
, and
Rai
,
R.
,
2020
, “
CNN-LSTM Deep Learning Architecture for Computer Vision-Based Modal Frequency Detection
,”
Mech. Syst. Signal. Process.
,
144
, p.
106885
.
89.
Zhang
,
K.
,
Chen
,
N.
,
Liu
,
J.
, and
Beer
,
M.
,
2022
, “
A GRU-Based Ensemble Learning Method for Time-Variant Uncertain Structural Response Analysis
,”
Comput. Methods. Appl. Mech. Eng.
,
391
, p.
114516
.
90.
Akay
,
H.
, and
Kim
,
S.-G.
,
2020
, “
Design Transcription: Deep Learning Based Design Feature Representation
,”
CIRP. Ann.
,
69
(
1
), pp.
141
144
.
91.
Krahe
,
C.
,
Bräunche
,
A.
,
Jacob
,
A.
,
Stricker
,
N.
, and
Lanza
,
G.
,
2020
, “
Deep Learning for Automated Product Design
,”
Procedia CIRP
,
91
, pp.
3
8
.
92.
Li
,
X.
,
Ning
,
S.
,
Liu
,
Z.
,
Yan
,
Z.
,
Luo
,
C.
, and
Zhuang
,
Z.
,
2020
, “
Designing Phononic Crystal With Anticipated Band Gap Through a Deep Learning Based Data-Driven Method
,”
Comput. Methods. Appl. Mech. Eng.
,
361
, p.
112737
.
93.
Gonzalez
,
F. J.
, and
Balajewicz
,
M.
,
2018
, “
Deep Convolutional Recurrent Autoencoders for Learning Low-Dimensional Feature Dynamics of Fluid Systems
,” arXiv preprint arXiv:1808.01346.
94.
Saha
,
S.
,
Minku
,
L. L.
,
Yao
,
X.
,
Senhoff
,
B.
, and
Menzel
,
S.
,
2021
, “
Exploiting Linear Interpolation of Variational Autoencoders for Satisfying Preferences in Evolutionary Design Optimization
,”
2021 IEEE Congress on Evolutionary Computation (CEC)
,
Kraków, Poland (Virtual)
, IEEE, pp.
1767
1776
.
95.
Gladstone
,
R. J.
,
Nabian
,
M. A.
,
Keshavarzzadeh
,
V.
, and
Meidani
,
H.
,
2021
, “
Robust Topology Optimization Using Variational Autoencoders
,” arXiv preprint arXiv:2107.10661.
96.
Saha
,
S.
,
Menzel
,
S.
,
Minku
,
L. L.
,
Yao
,
X.
,
Sendhoff
,
B.
, and
Wollstadt
,
P.
,
2020
, “
Quantifying the Generative Capabilities of Variational Autoencoders for 3d Car Point Clouds
,”
2020 IEEE Symposium Series on Computational Intelligence (SSCI)
,
Canberra, ACT, Australia
,
Dec. 1–4
, IEEE, pp.
1469
1477
..
97.
Kim
,
Y.
,
Park
,
H. K.
,
Jung
,
J.
,
Asghari-Rad
,
P.
,
Lee
,
S.
,
Kim
,
J. Y.
,
Jung
,
H. G.
, and
Kim
,
H. S.
,
2021
, “
Exploration of Optimal Microstructure and Mechanical Properties in Continuous Microstructure Space Using a Variational Autoencoder
,”
Mater. Des.
,
202
, p.
109544
.
98.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
,”
Comm. ACM
,
63
(
11
), pp.
139
144
.
99.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
53
65
.
100.
Toscano
,
J. D.
,
Zuniga-Navarrete
,
C.
,
Siu
,
W. D. J.
,
Segura
,
L. J.
, and
Sun
,
H.
,
2023
, “
Teeth Mold Point Cloud Completion Via Data Augmentation and Hybrid RL-GAN
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041008
.
101.
Kato
,
N.
,
Osone
,
H.
,
Oomori
,
K.
,
Ooi
,
C. W.
, and
Ochiai
,
Y.
,
2019
, “
GANS-Based Clothes Design: Pattern Maker Is All You Need to Design Clothing
,”
10th Augmented Human International Conference 2019
,
Reims, France
, pp.
1
7
.
102.
Oh
,
S.
,
Jung
,
Y.
,
Lee
,
I.
, and
Kang
,
N.
,
2018
, “
Design Automation by Integrating Generative Adversarial Networks and Topology Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
, Vol. 51753, American Society of Mechanical Engineers, p. V02AT03A008.
103.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2019
, “
Topology Design With Conditional Generative Adversarial Networks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
, Vol. 59186, American Society of Mechanical Engineers, p. V02AT03A062.
104.
Mao
,
Y.
,
He
,
Q.
, and
Zhao
,
X.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
), p.
eaaz4169
.
105.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
106.
Gurbuz
,
C.
,
Kronowetter
,
F.
,
Dietz
,
C.
,
Eser
,
M.
,
Schmid
,
J.
, and
Marburg
,
S.
,
2021
, “
Generative Adversarial Networks for the Design of Acoustic Metamaterials
,”
J. Acoustical Soc. America
,
149
(
2
), pp.
1162
1174
.
107.
Ororbia
,
M. E.
, and
Warn
,
G. P.
,
2022
, “
Design Synthesis Through a Markov Decision Process and Reinforcement Learning Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021002
.
108.
Agrawal
,
A.
, and
McComb
,
C.
,
2023
, “
Reinforcement Learning for Efficient Design Space Exploration With Variable Fidelity Analysis Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041004
.
109.
Dworschak
,
F.
,
Dietze
,
S.
,
Wittmann
,
M.
,
Schleich
,
B.
, and
Wartzack
,
S.
,
2022
, “
Reinforcement Learning for Engineering Design Automation
,”
Adv. Eng. Inform.
,
52
, p.
101612
.
110.
Pan
,
J.
,
Huang
,
J.
,
Wang
,
Y.
,
Cheng
,
G.
, and
Zeng
,
Y.
,
2021
, “
A Self-Learning Finite Element Extraction System Based on Reinforcement Learning
,”
AI EDAM
,
35
(
2
), pp.
180
208
.
111.
Sui
,
F.
,
Guo
,
R.
,
Zhang
,
Z.
,
Gu
,
G. X.
, and
Lin
,
L.
,
2021
, “
Deep Reinforcement Learning for Digital Materials Design
,”
ACS Mater. Lett.
,
3
(
10
), pp.
1433
1439
.
112.
Nguyen
,
D.-P.
,
Tho
,
M.-C. H. B.
, and
Dao
,
T.-T.
,
2022
, “
Reinforcement Learning Coupled With Finite Element Modeling for Facial Motion Learning
,”
Comput. Methods Programs Biomed.
,
221
, p.
106904
.
113.
Yang
,
Q.
,
Scuito
,
A.
,
Zimmerman
,
J.
,
Forlizzi
,
J.
, and
Steinfeld
,
A.
,
2018
, “
Investigating How Experienced Ux Designers Effectively Work With Machine Learning
,”
Designing Interactive Systems Conference
,
Hong Kong
, pp.
585
596
.
114.
Cheddak
,
A.
,
Ait Baha
,
T.
,
El Hajji
,
M.
, and
Es-Saady
,
Y.
,
2021
, “
Towards a Support System for Brainstorming Based Content-Based Information Extraction and Machine Learning
,”
International Conference on Business Intelligence
,
Beni-Mellal, Morocco
, Springer, pp.
43
55
.
115.
Romeo
,
L.
,
Loncarski
,
J.
,
Paolanti
,
M.
,
Bocchini
,
G.
,
Mancini
,
A.
, and
Frontoni
,
E.
,
2020
, “
Machine Learning-Based Design Support System for the Prediction of Heterogeneous Machine Parameters in Industry 4.0
,”
Expert. Syst. Appl.
,
140
, p.
112869
.
116.
Chen
,
X.
,
2022
, “
Design of Political Online Teaching Based on Artificial Speech Recognition and Deep Learning
,”
Comput. Intell. Neurosci.
,
2022
, pp.
1
10
.
117.
Nasiri
,
S.
, and
Khosravani
,
M. R.
,
2021
, “
Machine Learning in Predicting Mechanical Behavior of Additively Manufactured Parts
,”
J. Mater. Res. Technol.
,
14
, pp.
1137
1153
.
118.
Markova
,
V. D.
, and
Shopov
,
V. K.
,
2020
, “
Deep Learning Approach for Identification of Non-linear Dynamic Systems
,”
2020 International Conference on Information Technologies (InfoTech)
,
Varna, Bulgaria
, IEEE, pp.
1
4
.
119.
Young
,
C.
, and
Rai
,
R.
,
2021
, “
Automated Procedure Reconfiguration Framework for Augmented Reality-guided Maintenance Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
061011
.
120.
Vernica
,
T.
,
Lipman
,
R.
,
Kramer
,
T.
,
Kwon
,
S.
, and
Bernstein
,
W. Z.
,
2022
, “
Visualizing Standardized Model-Based Design and Inspection Data in Augmented Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041001
.
121.
Varkarakis
,
V.
,
Bazrafkan
,
S.
, and
Corcoran
,
P.
,
2020
, “
Deep Neural Network and Data Augmentation Methodology for Off-Axis Iris Segmentation in Wearable Headsets
,”
Neural Netw.
,
121
, pp.
101
121
.
122.
Kruszewski
,
P.
, and
Mahamad
,
T. J.
,
2018
, “
The Ai Powered Magic Mirror: Building Immersive AR/VR Experiences With Only Webcams and Deep Learning
,”
ACM SIGGRAPH 2018 Virtual, Augmented, and Mixed Reality
,
Vancouver, British Columbia, Canada
.
123.
Cha
,
J.
,
Kim
,
J.
, and
Kim
,
S.
,
2019
, “
Hands-Free User Interface for AR/VR Devices Exploiting Wearer’s Facial Gestures Using Unsupervised Deep Learning
,”
Sensors
,
19
(
20
), p.
4441
.
124.
Shen
,
Y.
,
Ong
,
S. K.
, and
Nee
,
A. Y.
,
2010
, “
Augmented Reality for Collaborative Product Design and Development
,”
Design Stud.
,
31
(
2
), pp.
118
145
.
125.
Naqvi
,
R. A.
,
Arsalan
,
M.
,
Batchuluun
,
G.
,
Yoon
,
H. S.
, and
Park
,
K. R.
,
2018
, “
Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor
,”
Sensors
,
18
(
2
), p.
456
.
126.
Carvalho
,
T. P.
,
Soares
,
F. A.
,
Vita
,
R.
,
Francisco
,
R. D. P.
,
Basto
,
J. P.
, and
Alcalá
,
S. G.
,
2019
, “
A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance
,”
Computers Ind. Eng.
,
137
, p.
106024
.
127.
Agoston
,
M. K.
,
2005
,
Computer Graphics and Geometric Modeling
, Vol.
1
,
Springer
,
London, UK
.
128.
Kukreja
,
A.
, and
Pande
,
S.
,
2023
, “
An Efficient Iso-Scallop Toolpath Planning Strategy Using Voxel-Based Computer Aided Design Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031009
.
129.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3d Shapenets: A Deep Representation for Volumetric Shapes
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
, pp.
1912
1920
.
130.
Wu
,
J.
,
Zhang
,
C.
,
Xue
,
T.
,
Freeman
,
W. T.
, and
Tenenbaum
,
J. B.
,
2016
, “
Learning a Probabilistic Latent Space of Object Shapes Via 3d Generative-Adversarial Modeling
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
.
131.
Choy
,
C. B.
,
Xu
,
D.
,
Gwak
,
J.
,
Chen
,
K.
, and
Savarese
,
S.
,
2016
, “
3D-R2N2: A Unified Approach for Single and Multi-View 3d Object Reconstruction
,”
Computer Vision--ECCV 2016: 14th European Conference
,
Amsterdam, The Netherlands
, Springer, pp.
628
644
.
132.
Brock
,
A.
,
Lim
,
T.
,
Ritchie
,
J. M.
, and
Weston
,
N.
,
2016
, “
Generative and Discriminative Voxel Modeling With Convolutional Neural Networks
,”
Neural Inofrmation Processing Conference: 3D Deep Learning
,
Barcelona, Spain
.
133.
Xiang
,
Y.
,
Choi
,
W.
,
Lin
,
Y.
, and
Savarese
,
S.
,
2015
, “
Data-Driven 3D Voxel Patterns for Object Category Recognition
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
, pp.
1903
1911
.
134.
Tatarchenko
,
M.
,
Dosovitskiy
,
A.
, and
Brox
,
T.
,
2017
, “
Octree Generating Networks: Efficient Convolutional Architectures for High-Resolution 3d Outputs
,”
IEEE International IEEE Conference on Computer Vision
,
Venice, Italy
, pp.
2088
2096
.
135.
Samet
,
H.
,
1984
, “
The Quadtree and Related Hierarchical Data Structures
,”
ACM Comput. Surveys (CSUR)
,
16
(
2
), pp.
187
260
.
136.
Häne
,
C.
,
Tulsiani
,
S.
, and
Malik
,
J.
,
2017
, “
Hierarchical Surface Prediction for 3d Object Reconstruction
,”
International Conference on 3D Vision (3DV)
,
Qingdao, China
, IEEE, pp.
412
420
.
137.
Wang
,
P.-S.
,
Liu
,
Y.
,
Guo
,
Y.-X.
,
Sun
,
C.-Y.
, and
Tong
,
X.
,
2017
, “
O-CNN: Octree-Based Convolutional Neural Networks for 3d Shape Analysis
,”
ACM Trans. Graphics (TOG)
,
36
(
4
), pp.
1
11
.
138.
Wang
,
P.-S.
,
Sun
,
C.-Y.
,
Liu
,
Y.
, and
Tong
,
X.
,
2018
, “
Adaptive O-CNN: A Patch-Based Deep Representation of 3D Shapes
,”
ACM Trans. Graphics (TOG)
,
37
(
6
), pp.
1
11
.
139.
Ahmed
,
E.
,
Saint
,
A.
,
Shabayek
,
A. E. R.
,
Cherenkova
,
K.
,
Das
,
R.
,
Gusev
,
G.
,
Aouada
,
D.
, and
Ottersten
,
B.
,
2018
, “
A Survey on Deep Learning Advances on Different 3d Data Representations
,” arXiv preprint arXiv:1808.01462.
140.
Karakas
,
E. S.
,
Aureli
,
M.
, and
Evrensel
,
C. A.
,
2020
, “
Cavitation Performance of Constant and Variable Pitch Helical Inducers for Centrifugal Pumps: Effect of Inducer Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021211
.
141.
Lim
,
J.
,
Ryu
,
S.
,
Park
,
K.
,
Choe
,
Y. J.
,
Ham
,
J.
, and
Kim
,
W. Y.
,
2019
, “
Predicting Drugâ Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation
,”
J. Chem. Infor. Model.
,
59
(
9
), p.
3981
3988
.
142.
López
,
C.
,
2023
, “
Artificial Intelligence and Advanced Materials
,”
Adv. Mater.
,
35
(
23
), p.
2208683
.
143.
Fan
,
H.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
A Point Set Generation Network for 3d Object Reconstruction From a Single Image
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
.
144.
Lin
,
C.-H.
,
Kong
,
C.
, and
Lucey
,
S.
,
2018
, “
Learning Efficient Point Cloud Generation for Dense 3d Object Reconstruction
,”
AAAI Conference on Artificial Intelligence
,
New Orleans, LA
,
Feb. 2–7
, Vol. 32..
145.
Yang
,
G.
,
Huang
,
X.
,
Hao
,
Z.
,
Liu
,
M.-Y.
,
Belongie
,
S.
, and
Hariharan
,
B.
,
2019
, “
Pointflow: 3D Point Cloud Generation with Continuous Normalizing Flows
,”
IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
, pp.
4541
4550
.
146.
Achlioptas
,
P.
,
Diamanti
,
O.
,
Mitliagkas
,
I.
, and
Guibas
,
L.
,
2018
, “
Learning Representations and Generative Models for 3D Point Clouds
,”
International Conference on Machine Learning
,
Stockholmsmässan, Stockholm Sweden
, PMLR, pp.
40
49
.
147.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet: Deep Learning on Point Sets for 3d Classification and Segmentation
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
, pp.
652
660
.
148.
Rangel
,
J. C.
,
Morell
,
V.
,
Cazorla
,
M.
,
Orts-Escolano
,
S.
, and
García-Rodríguez
,
J.
,
2017
, “
Object Recognition in Noisy RGB-D Data Using Gng
,”
Pattern Anal. Appl.
,
20
(
4
), pp.
1061
1076
.
149.
Mortenson
,
M. E.
,
1997
,
Geometric Modeling
,
John Wiley & Sons Inc
,
Hoboken, NJ
.
150.
Stroud
,
I.
,
2006
,
Boundary Representation Modelling Techniques
,
Springer Science & Business Media
,
Berlin, Germany
.
151.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2019
, “
ABC: A Big CAD Model Dataset for Geometric Deep Learning
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, pp.
9601
9611
.
152.
Chen
,
W.
, and
Fuge
,
M.
,
2018
, “
Béziergan: Automatic Generation of Smooth Curves From Interpretable Low-Dimensional Parameters
,” arXiv preprint arXiv:1808.08871.
153.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M. D.
,
2020
, “
Airfoil Design Parameterization and Optimization Using Bézier Generative Adversarial Networks
,”
AIAA. J.
,
58
(
11
), pp.
4723
4735
.
154.
Du
,
X.
,
He
,
P.
, and
Martins
,
J. R.
,
2020
, “
A B-Spline-Based Generative Adversarial Network Model for Fast Interactive Airfoil Aerodynamic Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
, p.
2128
.
155.
Chen
,
Q.
,
Wang
,
J.
,
Pope
,
P.
,
Chen
,
W.
, and
Fuge
,
M.
,
2022
, “
Inverse Design of Two-Dimensional Airfoils Using Conditional Generative Models and Surrogate Log-Likelihoods
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021712
.
156.
Yoo
,
S.
,
Lee
,
S.
,
Kim
,
S.
,
Hwang
,
K. H.
,
Park
,
J. H.
, and
Kang
,
N.
,
2021
, “
Integrating Deep Learning Into CAD/CAE System: Generative Design and Evaluation of 3d Conceptual Wheel
,”
Struct. Multidisciplinary Optim.
,
64
(
4
), pp.
2725
2747
.
157.
Groueix
,
T.
,
Fisher
,
M.
,
Kim
,
V. G.
,
Russell
,
B. C.
, and
Aubry
,
M.
,
2018
, “
A Papier-Mâché Approach to Learning 3d Surface Generation
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
, pp.
216
224
.
158.
Nash
,
C.
,
Ganin
,
Y.
,
Eslami
,
S. A.
, and
Battaglia
,
P.
,
2020
, “
Polygen: An Autoregressive Generative Model of 3d Meshes
,”
International Conference on Machine Learning
,
Vienna, Austria
, PMLR, pp.
7220
7229
.
159.
Wang
,
N.
,
Zhang
,
Y.
,
Li
,
Z.
,
Fu
,
Y.
,
Liu
,
W.
, and
Jiang
,
Y.-G.
,
2018
, “
Pixel2mesh: Generating 3d Mesh Models From Single RGB Images
,”
European Conference on Computer Vision (ECCV)
,
Munich, Germany
, pp.
52
67
.
160.
Smith
,
E. J.
,
Fujimoto
,
S.
,
Romero
,
A.
, and
Meger
,
D.
,
2019
, “
Geometrics: Exploiting Geometric Structure for Graph-Encoded Objects
,”
International Conference on Machine Learning
,
Long Beach, CA
.
161.
Gkioxari
,
G.
,
Malik
,
J.
, and
Johnson
,
J.
,
2019
, “
Mesh R-CNN
,”
IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
, pp.
9785
9795
.
162.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graphical Models
,
73
(
5
), pp.
165
181
.
163.
Wang
,
J.
,
Chen
,
W. W.
,
Da
,
D.
,
Fuge
,
M.
, and
Rai
,
R.
,
2022
, “
IH-GAN: A Conditional Generative Model for Implicit Surface-Based Inverse Design of Cellular Structures
,”
Comput. Methods. Appl. Mech. Eng.
,
396
, p.
115060
.
164.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
NPJ Comput. Mater.
,
6
(
1
), pp.
1
10
.
165.
Mescheder
,
L.
,
Oechsle
,
M.
,
Niemeyer
,
M.
,
Nowozin
,
S.
, and
Geiger
,
A.
,
2019
, “
Occupancy Networks: Learning 3d Reconstruction in Function Space
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, pp.
4460
4470
.
166.
Chen
,
Z.
, and
Zhang
,
H.
,
2019
, “
Learning Implicit Fields for Generative Shape Modeling
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, pp.
5939
5948
.
167.
Park
,
J. J.
,
Florence
,
P.
,
Straub
,
J.
,
Newcombe
,
R.
, and
Lovegrove
,
S.
,
2019
, “
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, pp.
165
174
.
168.
Xu
,
Q.
,
Wang
,
W.
,
Ceylan
,
D.
,
Mech
,
R.
, and
Neumann
,
U.
,
2019
, “
DISN: Deep Implicit Surface Network for High-Quality Single-View 3d Reconstruction
,”
Advances in Neural Information Processing Systems
,
Vancouver, BC, Canada
.
169.
Genova
,
K.
,
Cole
,
F.
,
Sud
,
A.
,
Sarna
,
A.
, and
Funkhouser
,
T.
,
2020
, “
Local Deep Implicit Functions for 3d Shape
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
, pp.
4857
4866
.
170.
Massarwi
,
F.
, and
Elber
,
G.
,
2016
, “
A B-spline Based Framework for Volumetric Object Modeling
,”
Comput. Aided Design
,
78
, pp.
36
47
.
171.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods. Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
172.
Hy
,
T. S.
,
2022
, “Graph Representation Learning, Deep Generative Models on Graphs, Group Equivariant Molecular Neural Networks and Multiresolution Machine Learning,” Ph.D. thesis,
The University of Chicago
,
Chicago, IL
.
173.
Hedberg Jr
,
T. D.
,
Bajaj
,
M.
, and
Camelio
,
J. A.
,
2020
, “
Using Graphs to Link Data Across the Product Lifecycle for Enabling Smart Manufacturing Digital Threads
,”
J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011011
.
174.
Hamilton
,
W. L.
,
2020
, “
Graph Representation Learning
,”
Synth. Lect. Artif. Intell. Machine Learn.
,
14
(
3
), pp.
1
159
.
175.
Scarselli
,
F.
,
Gori
,
M.
,
Tsoi
,
A. C.
,
Hagenbuchner
,
M.
, and
Monfardini
,
G.
,
2008
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Netw.
,
20
(
1
), pp.
61
80
.
176.
Zhou
,
J.
,
Cui
,
G.
,
Hu
,
S.
,
Zhang
,
Z.
,
Yang
,
C.
,
Liu
,
Z.
,
Wang
,
L.
,
Li
,
C.
, and
Sun
,
M.
,
2020
, “
Graph Neural Networks: A Review of Methods and Applications
,”
AI Open
,
1
, pp.
57
81
.
177.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “
Semi-Supervised Classification With Graph Convolutional Networks
,”
International Conference on Learning Representations
,
San Juan, Puerto Rico
.
178.
Duvenaud
,
D.
,
Maclaurin
,
D.
,
Aguilera-Iparraguirre
,
J.
,
Gómez-Bombarelli
,
R.
,
Hirzel
,
T.
,
Aspuru-Guzik
,
A.
, and
Adams
,
R. P.
,
2015
, “
Convolutional Networks on Graphs for Learning Molecular Fingerprints
,”
Advances in Neural Information Processing Systems
,
Montreal, Canada
.
179.
Liang
,
X.
,
Shen
,
X.
,
Feng
,
J.
,
Lin
,
L.
, and
Yan
,
S.
,
2016
, “
Semantic Object Parsing With Graph LSTM
,”
Computer Vision--ECCV 2016: 14th European Conference
,
Amsterdam, The Netherlands
, Springer, pp.
125
143
.
180.
Hamilton
,
W. L.
,
Ying
,
R.
, and
Leskovec
,
J.
,
2017
, “
Inductive Representation Learning on Large Graphs
,”
Advances in neural information processing systems
,
Long Beach, CA
,
Dec. 4–9
.
181.
Wang
,
X.
,
Ji
,
H.
,
Shi
,
C.
,
Wang
,
B.
,
Ye
,
Y.
,
Cui
,
P.
, and
Yu
,
P. S.
,
2019
, “
Heterogeneous Graph Attention Network
,”
The World Wide Web Conference
,
San Francisco, CA
, pp.
2022
2032
.
182.
Yun
,
S.
,
Jeong
,
M.
,
Kim
,
R.
,
Kang
,
J.
, and
Kim
,
H. J.
,
2019
, “
Graph Transformer Networks
,” Advances in Neural Information Processing Systems,
32
, pp.
11983
11993
.
183.
Fu
,
X.
,
Zhang
,
J.
,
Meng
,
Z.
, and
King
,
I.
,
2020
, “
MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
,”
The Web Conference
,
Taipei, Taiwan
, pp.
2331
2341
.
184.
Hu
,
Z.
,
Dong
,
Y.
,
Wang
,
K.
, and
Sun
,
Y.
,
2020
, “
Heterogeneous Graph Transformer
,”
The Web Conference
,
Taipei, Taiwan
, pp.
2704
2710
.
185.
Zhang
,
C.
,
Song
,
D.
,
Huang
,
C.
,
Swami
,
A.
, and
Chawla
,
N. V.
,
2019
, “
Heterogeneous Graph Neural Network
,”
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
,
Anchorage, AK
, pp.
793
803
.
186.
Beck
,
D.
,
Haffari
,
G.
, and
Cohn
,
T.
,
2018
, “
Graph-to-Sequence Learning Using Gated Graph Neural Networks
,”
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
,
Melbourne, Australia
.
187.
Schlichtkrull
,
M.
,
Kipf
,
T. N.
,
Bloem
,
P.
,
Van Den Berg
,
R.
,
Titov
,
I.
, and
Welling
,
M.
,
2018
, “
Modeling Relational Data With Graph Convolutional Networks
,”
The Semantic Web: 15th International Conference, ESWC
,
Heraklion, Crete, Greece
, Springer, pp.
593
607
.
188.
Li
,
Y.
,
Yu
,
R.
,
Shahabi
,
C.
, and
Liu
,
Y.
,
2017
, “
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
,”
International Conference on Learning Representations
,
Vancouver, BC, Canada
.
189.
Yu
,
B.
,
Yin
,
H.
, and
Zhu
,
Z.
,
2018
, “
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
,”
27th International Joint Conference on Artificial Intelligence
,
Stockholm, Sweden
.
190.
Manessi
,
F.
,
Rozza
,
A.
, and
Manzo
,
M.
,
2020
, “
Dynamic Graph Convolutional Networks
,”
Pattern Recogn.
,
97
, p.
107000
.
191.
Rossi
,
E.
,
Chamberlain
,
B.
,
Frasca
,
F.
,
Eynard
,
D.
,
Monti
,
F.
, and
Bronstein
,
M.
,
2020
, “
Temporal Graph Networks for Deep Learning on Dynamic Graphs
,” arXiv preprint arXiv:2006.10637.
192.
Pareja
,
A.
,
Domeniconi
,
G.
,
Chen
,
J.
,
Ma
,
T.
,
Suzumura
,
T.
,
Kanezashi
,
H.
,
Kaler
,
T.
,
Schardl
,
T.
, and
Leiserson
,
C.
,
2020
, “
Evolvegcn: Evolving Graph Convolutional Networks for Dynamic Graphs
,”
AAAI Conference on Artificial Intelligence
,
New York
, Vol. 34, pp.
5363
5370
.
193.
Zhu
,
Y.
,
Min
,
M. R.
,
Kadav
,
A.
, and
Graf
,
H. P.
,
2020
, “
S3VAE: Self-supervised Sequential VAE for Representation Disentanglement and Data Generation
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
, pp.
6538
6547
.
194.
Huang
,
H.
,
Amor
,
B. B.
,
Lin
,
X.
,
Zhu
,
F.
, and
Fang
,
Y.
,
2021
, “
G-VAE, a Geometric Convolutional VAE for Proteinstructure Generation
,” arXiv preprint arXiv:2106.11920.
195.
Oubari
,
F.
,
De Mathelin
,
A.
,
Décatoire
,
R.
, and
Mougeot
,
M.
,
2021
, “
A Binded VAE for Inorganic Material Generation
,”
NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications
,
Vancouver, Canada (Virtual)
.
196.
Ma
,
C.
, and
Zhang
,
X.
,
2021
, “
GF-VAE: A Flow-Based Variational Autoencoder for Molecule Generation
,”
30th ACM International Conference on Information & Knowledge Management
,
Gold Coast, Queensland, Australia
, pp.
1181
1190
.
197.
Chen
,
X.
,
Xu
,
J.
,
Zhou
,
R.
,
Chen
,
W.
,
Fang
,
J.
, and
Liu
,
C.
,
2021
, “
Trajvae: A Variational Autoencoder Model for Trajectory Generation
,”
Neurocomputing
,
428
, pp.
332
339
.
198.
Xie
,
T.
,
Fu
,
X.
,
Ganea
,
O.-E.
,
Barzilay
,
R.
, and
Jaakkola
,
T.
,
2021
, “
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
,”
International Conference on Learning Representations
,
Vienna, Austria
.
199.
Fayyaz
,
R. A.
,
Maqbool
,
M.
, and
Hanif
,
M.
,
2020
, “
Textile Design Generation Using GANS
,”
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
,
London, ON, Canada
, IEEE, p.
5
.
200.
Fedorova
,
S.
,
2021
, “
GANS for Urban Design
,” arXiv preprint arXiv:2105.01727.
201.
Brockschmidt
,
M.
,
Allamanis
,
M.
,
Gaunt
,
A. L.
, and
Polozov
,
O.
,
2018
, “
Generative Code Modeling With Graphs
,”
International Conference on Learning Representations
,
Vancouver, BC, Canada
.
202.
Imrie
,
F.
,
Hadfield
,
T. E.
,
Bradley
,
A. R.
, and
Deane
,
C. M.
,
2021
, “
Deep Generative Design With 3d Pharmacophoric Constraints
,”
Chem. Sci.
,
12
(
43
), pp.
14577
14589
.
203.
Lai
,
X.
,
Yang
,
P.
,
Wang
,
K.
,
Yang
,
Q.
, and
Yu
,
D.
,
2021
, “
MGRNN: Structure Generation of Molecules Based on Graph Recurrent Neural Networks
,”
Molecular Inf.
,
40
(
10
), p.
2100091
.
204.
Li
,
Y.
,
Vinyals
,
O.
,
Dyer
,
C.
,
Pascanu
,
R.
, and
Battaglia
,
P.
,
2018
, “
Learning Deep Generative Models of Graphs
,” arXiv preprint arXiv:1803.03324.
205.
Liu
,
C.-H.
,
Korablyov
,
M.
,
Jastrzębski
,
S.
,
Włodarczyk-Pruszyński
,
P.
,
Bengio
,
Y.
, and
Segler
,
M. H.
,
2020
, “
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for de Novo Drug Design
,” arXiv preprint arXiv:2011.13042.
206.
Meyers
,
J.
,
Fabian
,
B.
, and
Brown
,
N.
,
2021
, “
de Novo Molecular Design and Generative Models
,”
Drug Discov. Today
,
26
(
11
), pp.
2707
2715
.
207.
Strokach
,
A.
,
Becerra
,
D.
,
Corbi-Verge
,
C.
,
Perez-Riba
,
A.
, and
Kim
,
P. M.
,
2020
, “
Fast and Flexible Design of Novel Proteins Using Graph Neural Networks
,” BioRxiv, p.
868935
.
208.
Wang
,
H.
,
Wang
,
K.
,
Yang
,
J.
,
Shen
,
L.
,
Sun
,
N.
,
Lee
,
H.-S.
, and
Han
,
S.
,
2020
, “
GCN-RL Circuit Designer: Transferable Transistor Sizing With Graph Neural Networks and Reinforcement Learning
,”
57th ACM/IEEE Design Automation Conference (DAC)
,
San Francisco, CA
, IEEE, pp.
1
6
.
209.
Xiong
,
J.
,
Xiong
,
Z.
,
Chen
,
K.
,
Jiang
,
H.
, and
Zheng
,
M.
,
2021
, “
Graph Neural Networks for Automated De Novo Drug Design
,”
Drug Discov. Today
,
26
(
6
), pp.
1382
1393
.
210.
Li
,
Y.
,
Tarlow
,
D.
,
Brockschmidt
,
M.
, and
Zemel
,
R.
,
2016
, “
Gated Graph Sequence Neural Networks
,”
International Conference on Learning Representations
,
San Juan, Puerto Rico
.
211.
Agnesina
,
A.
,
Chang
,
K.
, and
Lim
,
S. K.
,
2020
, “
VLSI Placement Parameter Optimization Using Deep Reinforcement Learning
,”
39th International Conference on Computer-Aided Design
,
USA (Virtual)
, pp.
1
9
.
212.
Zhang
,
G.
,
He
,
H.
, and
Katabi
,
D.
,
2019
, “
Circuit-GNN: Graph Neural Networks for Distributed Circuit Design
,”
International Conference on Machine Learning
,
Long Beach, CA
, PMLR, pp.
7364
7373
.
213.
Sun
,
Z.
,
Spyridis
,
Y.
,
Lagkas
,
T.
,
Sesis
,
A.
,
Efstathopoulos
,
G.
, and
Sarigiannidis
,
P.
,
2021
, “
End-to-End Deep Graph Convolutional Neural Network Approach for Intentional Islanding in Power Systems Considering Load-Generation Balance
,”
Sensors
,
21
(
5
), p.
1650
.
214.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-element Analysis
,”
J. R. Soc. Interface
,
15
(
138
), p.
20170844
.
215.
Roewer-Despres
,
F.
,
Khan
,
N.
, and
Stavness
,
I.
,
2018
, “
Towards Finite Element Simulation Using Deep Learning
,”
15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering
,
Lisbon, Portugal
,
Mar. 26–29
.
216.
Marcato
,
A.
,
Boccardo
,
G.
, and
Marchisio
,
D.
,
2021
, “
A Computational Workflow to Study Particle Transport and Filtration in Porous Media: Coupling CFD and Deep Learning
,”
Chem. Eng. J.
,
417
, p.
128936
.
217.
Zhang
,
T.-h.
, and
You
,
X.-y.
,
2014
, “
A Simulation-Based Inverse Design of Preset Aircraft Cabin Environment
,”
Building Environ.
,
82
, pp.
20
26
.
218.
Zhang
,
T.-h.
, and
You
,
X.-y.
,
2014
, “
Applying Neural Networks to Solve the Inverse Problem of Indoor Environment
,”
Indoor Built Environ.
,
23
(
8
), pp.
1187
1195
.
219.
Warey
,
A.
,
Kaushik
,
S.
,
Khalighi
,
B.
,
Cruse
,
M.
, and
Venkatesan
,
G.
,
2020
, “
Data-Driven Prediction of Vehicle Cabin Thermal Comfort: Using Machine Learning and High-Fidelity Simulation Results
,”
Int. J. Heat. Mass. Transfer.
,
148
, p.
119083
.
220.
Pillai
,
P.
,
Kaushik
,
A.
,
Bhavikatti
,
S.
,
Roy
,
A.
, and
Kumar
,
V.
,
2016
, “
A Hybrid Approach for Fusing Physics and Data for Failure Prediction
,”
Int. J. Prognostics Health Manage.
,
7
(
25
), pp.
1
12
.
221.
Jia
,
X.
,
Karpatne
,
A.
,
Willard
,
J.
,
Steinbach
,
M.
,
Read
,
J.
,
Hanson
,
P. C.
,
Dugan
,
H. A.
, and
Kumar
,
V.
,
2018
, “
Physics Guided Recurrent Neural Networks for Modeling Dynamical Systems: Application to Monitoring Water Temperature and Quality in Lakes
,” arXiv preprint arXiv:1810.02880.
222.
Parlos
,
A. G.
,
Rais
,
O. T.
, and
Atiya
,
A. F.
,
2000
, “
Multi-Step-Ahead Prediction Using Dynamic Recurrent Neural Networks
,”
Neural Netw.
,
13
(
7
), pp.
765
786
.
223.
Liu
,
L.
,
Yi
,
B.
, and
Li
,
D.
,
2023
, “
A Physics-Driven Method for Determining Wheel–Rail Contact Area With Gradient-Based Optimization
,”
J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051006
.
224.
Pinheiro
,
P. O.
,
Collobert
,
R.
, and
Dollár
,
P.
,
2015
, “
Learning to Segment Object Candidates
,”
Advances in Neural Information Processing Systems
,
Montreal, Quebec, Canada
, pp.
1990
1998
.
225.
Kumar
,
A.
,
Irsoy
,
O.
,
Ondruska
,
P.
,
Iyyer
,
M.
,
Bradbury
,
J.
,
Gulrajani
,
I.
,
Zhong
,
V.
,
Paulus
,
R.
, and
Socher
,
R.
,
2016
, “
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
,”
International Conference on Machine Learning
,
New York, USA
, pp.
1378
1387
.
226.
Daw
,
A.
,
Karpatne
,
A.
,
Watkins
,
W. D.
,
Read
,
J. S.
, and
Kumar
,
V.
,
2022
, “Physics-Guided Neural Networks (PGNN): An Application in Lake Temperature Modeling,”
Knowledge Guided Machine Learning
, 1st ed.,
Chapman and Hall/CRC
,
Boca Raton, FL
, pp.
353
372
.
227.
Viswanathan
,
N.
, and
Chu
,
C.-N.
,
2005
, “
Fastplace: Efficient Analytical Placement Using Cell Shifting, Iterative Local Refinement, and a Hybrid Net Model
,”
IEEE Trans. Computer-Aided Design Integrated Circuits Syst.
,
24
(
5
), pp.
722
733
.
228.
Cubillos
,
F. A.
,
Vyhmeister
,
E.
,
Acuña
,
G.
, and
Alvarez
,
P. I.
,
2011
, “
Rotary Dryer Control Using a Grey-Box Neural Model Scheme
,”
Drying Technol.
,
29
(
15
), pp.
1820
1827
.
229.
Xiong
,
Q.
, and
Jutan
,
A.
,
2002
, “
Grey-Box Modelling and Control of Chemical Processes
,”
Chem. Eng. Sci.
,
57
(
6
), pp.
1027
1039
.
230.
Cubillos
,
F. A.
, and
Lima
,
E. L.
,
1998
, “
Adaptive Hybrid Neural Models for Process Control
,”
Comput. Chem. Eng.
,
22
, pp.
S989
S992
.
231.
Van Can
,
H. J.
,
Hellinga
,
C.
,
Luyben
,
K. C. A.
,
Heijnen
,
J. J.
, and
Te Braake
,
H. A.
,
1996
, “
Strategy for Dynamic Process Modeling Based on Neural Networks in Macroscopic Balances
,”
AIChE. J.
,
42
(
12
), pp.
3403
3418
.
232.
Cen
,
Z.
,
Wei
,
J.
, and
Jiang
,
R.
,
2013
, “
A Gray-Box Neural Network-Based Model Identification and Fault Estimation Scheme for Nonlinear Dynamic Systems
,”
Int. J. Neural Syst.
,
23
(
6
), p.
1350025
.
233.
Zhou
,
Q.
,
Wang
,
S.
,
Xu
,
X.
, and
Xiao
,
F.
,
2008
, “
A Grey-Box Model of Next-Day Building Thermal Load Prediction for Energy-Efficient Control
,”
Int. J. Energy Res.
,
32
(
15
), pp.
1418
1431
.
234.
Leifsson
,
L. Þ.
,
Sævarsdóttir
,
H.
,
Sigurðsson
,
S. Þ.
, and
Vésteinsson
,
A.
,
2008
, “
Grey-Box Modeling of an Ocean Vessel for Operational Optimization
,”
Simul. Modell. Practice Theory
,
16
(
8
), pp.
923
932
.
235.
Ba
,
Y.
,
Zhao
,
G.
, and
Kadambi
,
A.
,
2019
, “
Blending Diverse Physical Priors With Neural Networks
,” arXiv preprint arXiv:1910.00201.
236.
Zhang
,
Z.
,
Rai
,
R.
,
Chowdhury
,
S.
, and
Doermann
,
D.
,
2021
, “
Midphynet: Memorized Infusion of Decomposed Physics in Neural Networks to Model Dynamic Systems
,”
Neurocomputing
,
428
, pp.
116
129
.
237.
Dourado
,
A.
, and
Viana
,
F. A.
,
2020
, “
Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
,”
J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061007
.
238.
Nguyen
,
R.
,
Singh
,
S. K.
, and
Rai
,
R.
,
2023
, “
Fuzzygan: Fuzzy Generative Adversarial Networks for Regression Tasks
,”
Neurocomputing
,
525
, pp.
88
110
.
239.
Nguyen
,
R.
,
Singh
,
S. K.
, and
Rai
,
R.
,
2023
, “
Physics-Infused Fuzzy Generative Adversarial Network for Robust Failure Prognosis
,”
Mech. Syst. Signal. Process.
,
184
, p.
109611
.
240.
Mehmani
,
A.
,
Chowdhury
,
S.
,
Tong
,
W.
, and
Messac
,
A.
,
2015
, “
Adaptive Switching of Variable-Fidelity Models in Population-Based Optimization
,”
Eng. Appl. Sci. Optim.
,
38
(
1
), pp.
175
205
.
241.
Wan
,
Z. Y.
,
Vlachas
,
P.
,
Koumoutsakos
,
P.
, and
Sapsis
,
T.
,
2018
, “
Data-Assisted Reduced-Order Modeling of Extreme Events in Complex Dynamical Systems
,”
PLoS. One.
,
13
(
5
), p.
e0197704
.
242.
Ajay
,
A.
,
Wu
,
J.
,
Fazeli
,
N.
,
Bauza
,
M.
,
Kaelbling
,
L. P.
,
Tenenbaum
,
J. B.
, and
Rodriguez
,
A.
,
2018
, “
Augmenting Physical Simulators With Stochastic Neural Networks: Case Study of Planar Pushing and Bouncing
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, pp.
3066
3073
.
243.
Young
,
C.-C.
,
Liu
,
W.-C.
, and
Wu
,
M.-C.
,
2017
, “
A Physically Based and Machine Learning Hybrid Approach for Accurate Rainfall-Runoff Modeling During Extreme Typhoon Events
,”
Appl. Soft. Comput.
,
53
, pp.
205
216
.
244.
Long
,
Y.
,
She
,
X.
, and
Mukhopadhyay
,
S.
,
2018
, “
Hybridnet: Integrating Model-Based and Data-Driven Learning to Predict Evolution of Dynamical Systems
,”
Conference on Robot Learning
,
Zurich, Switzerland
, PMLR, pp.
551
560
.
245.
Muralidhar
,
N.
,
Islam
,
M. R.
,
Marwah
,
M.
,
Karpatne
,
A.
, and
Ramakrishnan
,
N.
,
2018
, “
Incorporating Prior Domain Knowledge Into Deep Neural Networks
,”
IEEE International Conference on Big Data (big data)
,
Seattle, WA
, IEEE, pp.
36
45
.
246.
Singh
,
S. K.
,
Yang
,
R.
,
Behjat
,
A.
,
Rai
,
R.
,
Chowdhury
,
S.
, and
Matei
,
I.
,
2019
, “
PI-LSTM: Physics-Infused Long Short-Term Memory Network
,”
IEEE International Conference On Machine Learning And Applications (ICMLA)
,
Boca Raton, FL
, pp.
34
41
.
247.
Matei
,
I.
,
de Kleer
,
J.
,
Somarakis
,
C.
,
Rai
,
R.
, and
Baras
,
J. S.
,
2020
, “
Interpretable Machine Learning Models: A Physics-Based View
,” arXiv preprint arXiv:2003.10025.
248.
Zhang
,
Z.
,
Zhu
,
Y.
,
Rai
,
R.
, and
Doermann
,
D.
,
2022
, “
Pimnet: Physics-Infused Neural Network for Human Motion Prediction
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
8949
8955
.
249.
Li
,
M.
, and
McComb
,
C.
,
2022
, “
Using Physics-Informed Generative Adversarial Networks to Perform Super-Resolution for Multiphase Fluid Simulations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
044501
.
250.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
.
251.
Stewart
,
R.
, and
Ermon
,
S.
,
2017
, “
Label-Free Supervision of Neural Networks With Physics and Domain Knowledge
,”
AAAI Conference on Artificial Intelligence
,
San Francisco, CA
,
Feb. 4–9
, Vol. 31.
252.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2020
, “
Solution of Biharmonic Equation in Complicated Geometries With Physics Informed Extreme Learning Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061004
.
253.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.
254.
Tran
,
A.
,
Maupin
,
K.
, and
Rodgers
,
T.
,
2023
, “
Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011011
.
255.
Malashkhia
,
L.
,
Liu
,
D.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2023
, “
Physics-Constrained Bayesian Neural Network for Bias and Variance Reduction
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011012
.
256.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2023
, “
Multifidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031008
.
257.
Kim
,
B.
,
Azevedo
,
V. C.
,
Thuerey
,
N.
,
Kim
,
T.
,
Gross
,
M.
, and
Solenthaler
,
B.
,
2019
, “
Deep Fluids: A Generative Network for Parameterized Fluid Simulations
,” Computer Graphics Forum, Vol.
38
,
Wiley Online Library
, pp.
59
70
.
258.
Liu
,
B.
,
Mason
,
G.
,
Hodgson
,
J.
,
Tong
,
Y.
, and
Desbrun
,
M.
,
2015
, “
Model-Reduced Variational Fluid Simulation
,”
ACM Trans. Graph. (TOG)
,
34
(
6
), p.
244
.
259.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
260.
Lutter
,
M.
,
Ritter
,
C.
, and
Peters
,
J.
,
2019
, “
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
,”
International Conference on Learning Representations
,
Vancouver, BC, Canada
.
261.
Long
,
Z.
,
Lu
,
Y.
, and
Dong
,
B.
,
2019
, “
PDE-Net 2.0: Learning PDEs From Data With a Numeric-Symbolic Hybrid Deep Network
,”
J. Comput. Phys.
,
399
, p.
108925
.
262.
Lee
,
S.
, and
You
,
D.
,
2017
, “
Prediction of Laminar Vortex Shedding Over a Cylinder Using Deep Learning
,” arXiv preprint arXiv:1712.07854.
263.
Xu
,
K.
,
Kwok
,
T.-H.
,
Zhao
,
Z.
, and
Chen
,
Y.
,
2017
, “
A Reverse Compensation Framework for Shape Deformation Control in Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021012
.
264.
Ries
,
D.
,
Zhang
,
A.
,
Derek Tucker
,
J.
,
Shuler
,
K.
, and
Ausdemore
,
M.
,
2023
, “
A Framework for Inverse Prediction Using Functional Response Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011002
.
265.
Warey
,
A.
,
Raul
,
V.
,
Kaushik
,
S.
,
Han
,
T.
, and
Chakravarty
,
R.
,
2023
, “
Generative Inverse Design of Aerodynamic Shapes Using Conditional Invertible Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031006
.
266.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2018
, “
Analyzing Inverse Problems With Invertible Neural Networks
,”
International Conference on Learning Representations
,
Vancouver, BC, Canada
.
267.
Sanchez-Lengeling
,
B.
, and
Aspuru-Guzik
,
A.
,
2018
, “
Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering
,”
Science
,
361
(
6400
), pp.
360
365
.
268.
Chen
,
X.
,
Wei
,
Z.
,
Li
,
M.
, and
Rocca
,
P.
,
2020
, “
A Review of Deep Learning Approaches for Inverse Scattering Problems (Invited Review)
,”
Progress Electromagnetics Res.
,
167
(
1
), pp.
67
81
.
269.
Nadell
,
C. C.
,
Huang
,
B.
,
Malof
,
J. M.
, and
Padilla
,
W. J.
,
2019
, “
Deep Learning for Accelerated All-Dielectric Metasurface Design
,”
Opt. Express
,
27
(
20
), pp.
27523
27535
.
270.
Ma
,
W.
,
Cheng
,
F.
, and
Liu
,
Y.
,
2018
, “
Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials
,”
ACS. Nano.
,
12
(
6
), pp.
6326
6334
.
271.
Li
,
W.
,
Meng
,
F.
,
Chen
,
Y.
,
Li
,
Y. f.
, and
Huang
,
X.
,
2019
, “
Topology Optimization of Photonic and Phononic Crystals and Metamaterials: A Review
,”
Adv. Theory Simul.
,
2
(
7
), p.
1900017
.
272.
Liu
,
D.
,
Tan
,
Y.
,
Khoram
,
E.
, and
Yu
,
Z.
,
2018
, “
Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures
,”
ACS. Photonics.
,
5
(
4
), pp.
1365
1369
.
273.
Liu
,
C.-X.
,
Yu
,
G.-L.
, and
Zhao
,
G.-Y.
,
2019
, “
Neural Networks for Inverse Design of Phononic Crystals
,”
AIP Adv.
,
9
(
8
), p.
085223
.
274.
Tahersima
,
M. H.
,
Kojima
,
K.
,
Koike-Akino
,
T.
,
Jha
,
D.
,
Wang
,
B.
,
Lin
,
C.
, and
Parsons
,
K.
,
2019
, “
Deep Neural Network Inverse Design of Integrated Photonic Power Splitters
,”
Sci. Rep.
,
9
(
1
), pp.
1
9
.
275.
Dimitrov
,
T.
,
Kreisbeck
,
C.
,
Becker
,
J. S.
,
Aspuru-Guzik
,
A.
, and
Saikin
,
S. K.
,
2019
, “
Autonomous Molecular Design: Then and Now
,”
ACS. Appl. Mater. Interfaces.
,
11
(
28
), pp.
24825
24836
.
276.
Gómez-Bombarelli
,
R.
,
Wei
,
J. N.
,
Duvenaud
,
D.
,
Hernández-Lobato
,
J. M.
,
Sánchez-Lengeling
,
B.
,
Sheberla
,
D.
,
Aguilera-Iparraguirre
,
J.
,
Hirzel
,
T. D.
,
Adams
,
R. P.
, and
Aspuru-Guzik
,
A.
,
2018
, “
Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
,”
ACS Central Sci.
,
4
(
2
), pp.
268
276
.
277.
O’Shea
,
K.
, and
Nash
,
R.
,
2015
, “
An Introduction to Convolutional Neural Networks
,” arXiv preprint arXiv:1511.08458.
278.
Sekar
,
V.
,
Zhang
,
M.
,
Shu
,
C.
, and
Khoo
,
B. C.
,
2019
, “
Inverse Design of Airfoil Using a Deep Convolutional Neural Network
,”
AIAA. J.
,
57
(
3
), pp.
993
1003
.
279.
Ponsen
,
M.
,
Taylor
,
M. E.
, and
Tuyls
,
K.
,
2009
, “
Abstraction and Generalization in Reinforcement Learning: A Summary and Framework
,” International Workshop on Adaptive and Learning Agents,
Springer
, pp.
1
32
.
280.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
281.
Szepesvári
,
C.
,
2010
, “
Algorithms for Reinforcement Learning
,”
Synth. Lect. Artif. Intell. Mach. Learn.
,
4
(
1
), pp.
1
103
.
282.
Lewis
,
F. L.
,
Vrabie
,
D.
, and
Vamvoudakis
,
K. G.
,
2012
, “
Reinforcement Learning and Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive Controllers
,”
IEEE Control Syst. Mag.
,
32
(
6
), pp.
76
105
.
283.
Popova
,
M.
,
Isayev
,
O.
, and
Tropsha
,
A.
,
2018
, “
Deep Reinforcement Learning for de Novo Drug Design
,”
Sci. Adv.
,
4
(
7
), p.
eaap7885
.
284.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems With Noisy Data
,”
J. Comput. Phys.
,
425
(
1
), p.
109913
.
285.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
286.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
1
38
.
287.
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization—Theory, Methods, and Applications
,
Springer Verlag
,
Germany
.
288.
Garland
,
A.
, and
Fadel
,
G.
,
2019
, “
Optimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021007
.
289.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods. Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
290.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
291.
Martínez
,
J.
,
Hornus
,
S.
,
Song
,
H.
, and
Lefebvre
,
S.
,
2018
, “
Polyhedral Voronoi Diagrams for Additive Manufacturing
,”
ACM Trans. Graphics (TOG)
,
37
(
4
), pp.
1
15
.
292.
Vogiatzis
,
P.
,
Chen
,
S.
, and
Zhou
,
C.
,
2017
, “
An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041012
.
293.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory.
,
143
, p.
103622
.
294.
Deng
,
H.
,
Hinnebusch
,
S.
, and
To
,
A. C.
,
2020
, “
Topology Optimization Design of Stretchable Metamaterials With Bézier Skeleton Explicit Density (BSED) Representation Algorithm
,”
Comput. Methods. Appl. Mech. Eng.
,
366
, p.
113093
.
295.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
296.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2018
, “
Multiscale Topology Optimization for Additively Manufactured Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031002
.
297.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1005
1012
.
298.
McAdams
,
D. A.
, and
Li
,
W.
,
2014
, “
A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031008
.
299.
Zhu
,
L.
,
Feng
,
R.
,
Li
,
X.
,
Xi
,
J.
, and
Wei
,
X.
,
2019
, “
A Tree-Shaped Support Structure for Additive Manufacturing Generated by Using a Hybrid of Particle Swarm Optimization and Greedy Algorithm
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041010
.
300.
Zymvragakis
,
G. S.
,
Koutsianitis
,
P.
, and
Stavroulakis
,
G. E.
,
2020
, “
Topology Optimization of Microstructures to Reduce Structural Oscillations
,”
https://doi.org/10.20944/preprints202011.0549.v1
,
1
.
301.
Olhoff
,
N.
, and
Du
,
J.
,
2009
, “On Topological Design Optimization of Structures Against Vibration and Noise Emission,”
Computational Aspects of Structural Acoustics and Vibration
,
Springer
,
Vienna
, pp.
217
276
.
302.
Bendsoe
,
M. P.
,
Lund
,
E.
,
Olhoff
,
N.
, and
Sigmund
,
O.
,
2005
, “
Topology Optimization-Broadening the Areas of Application
,”
Control Cybern.
,
34
(
1
), pp.
7
35
.
303.
Grihon
,
S.
,
Krog
,
L.
, and
Marasco
,
A.
,
2009
, “
Smart Design of Structures Through Topology Optimisation
,”
8th World Congress on Structural and Multidisciplinary Optimization
,
Lisbon, Portugal
,
June 1–5
.
304.
Yoon
,
G.
,
2009
, “
Topology Optimization for Stationary Fluid–Structure Interaction Problems Using a New Monolithic Formulation
,”
Int. J. Numerical Methods Eng.
,
82
, pp.
591
616
.
305.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Prentice Hall, Pearson Education, Inc.
,
Hoboken, NJ
.
306.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Netw.
,
9
(
5
), pp.
987
1000
.
307.
Rudd
,
K.
, and
Ferrari
,
S.
,
2015
, “
A Constrained Integration (CINT) Approach to Solving Partial Differential Equations Using Artificial Neural Networks
,”
Neurocomputing
,
155
, pp.
277
285
.
308.
Yildiz
,
A.
,
Öztürk
,
N.
,
Kaya
,
N.
, and
Öztürk
,
F.
,
2003
, “
Integrated Optimal Topology Design and Shape Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
25
(
4
), pp.
251
260
.
309.
Sosnovik
,
I.
, and
Oseledets
,
I.
,
2019
, “
Neural Networks for Topology Optimization
,”
Russian J. Numerical Anal. Math. Modell.
,
34
(
4
), pp.
215
223
.
310.
Zhang
,
Y.
,
Chen
,
A.
,
Peng
,
B.
,
Zhou
,
X.
, and
Wang
,
D.
,
2019
, “
A Deep Convolutional Neural Network for Topology Optimization With Strong Generalization Ability
,” arXiv preprint arXiv:1901.07761.
311.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3d Topology Optimization Using Convolutional Neural Networks
,” arXiv preprint arXiv:1808.07440.
312.
Rawat
,
S.
, and
Shen
,
M.-H. H.
,
2019
, “
A Novel Topology Optimization Approach Using Conditional Deep Learning
,” arXiv preprint arXiv:1901.04859.
313.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
314.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
315.
Li
,
B.
,
Huang
,
C.
,
Li
,
X.
,
Zheng
,
S.
, and
Hong
,
J.
,
2019
, “
Non-iterative Structural Topology Optimization Using Deep Learning
,”
Computer-Aided Design
,
115
, pp.
172
180
.
316.
Ates
,
G. C.
, and
Gorguluarslan
,
R. M.
,
2021
, “
Two-Stage Convolutional Encoder-Decoder Network to Improve the Performance and Reliability of Deep Learning Models for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
1927
1950
.
317.
Hu
,
X.
,
Li
,
F.
,
Samaras
,
D.
, and
Chen
,
C.
,
2019
, “
Topology-Preserving Deep Image Segmentation
,”
Advances in neural information processing systems
,
Vancouver, BC, Canada
,
Dec. 8–14
.
318.
Deng
,
H.
, and
To
,
A. C.
,
2020
, “
Topology Optimization Based on Deep Representation Learning (DRL) for Compliance and Stress-Constrained Design
,”
Comput. Mech.
,
66
, pp.
449
469
.
319.
Sasaki
,
H.
, and
Igarashi
,
H.
,
2019
, “
Topology Optimization Accelerated by Deep Learning
,”
IEEE. Trans. Magn.
,
55
(
6
), pp.
1
5
.
320.
Ma
,
W.
,
Liu
,
Z.
,
Kudyshev
,
Z. A.
,
Boltasseva
,
A.
,
Cai
,
W.
, and
Liu
,
Y.
,
2020
, “
Deep Learning for the Design of Photonic Structures
,”
Nature Photonics
,
15
, pp.
77
90
.
321.
Jiang
,
J.
,
Chen
,
M.
, and
Fan
,
J. A.
,
2020
, “
Deep Neural Networks for the Evaluation and Design of Photonic Devices
,”
Nature Rev. Mater.
,
6
, pp.
679
700
.
322.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids. Struct.
,
31
(
17
), pp.
2313
2329
.
323.
Sigmund
,
O.
,
1995
, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
,
20
(
4
), pp.
351
368
.
324.
Yan
,
X.
,
Huang
,
X.
,
Zha
,
Y.
, and
Xie
,
Y.
,
2014
, “
Concurrent Topology Optimization of Structures and Their Composite Microstructures
,”
Comput. Struct.
,
133
, pp.
103
110
.
325.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsoe
,
M.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscipl. Optim.
,
24
(
1
), pp.
1
10
.
326.
Xia
,
L.
, and
Breitkopf
,
P.
,
2014
, “
Concurrent Topology Optimization Design of Material and Structure Within Fe2 Nonlinear Multiscale Analysis Framework
,”
Comput. Methods. Appl. Mech. Eng.
,
278
, pp.
524
542
.
327.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1267
1281
.
328.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
(
4
), pp.
1503
1510
.
329.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Methods. Appl. Mech. Eng.
,
317
, pp.
84
101
.
330.
Li
,
H.
,
Luo
,
Z.
,
Gao
,
L.
, and
Walker
,
P.
,
2018
, “
Topology Optimization for Functionally Graded Cellular Composites With Metamaterials by Level Sets
,”
Comput. Methods. Appl. Mech. Eng.
,
328
(
1
), pp.
340
364
.
331.
Wang
,
Y.
,
Zhang
,
L.
,
Daynes
,
S.
,
Zhang
,
H.
,
Feih
,
S.
, and
Wang
,
M. Y.
,
2018
, “
Design of Graded Lattice Structure With Optimized Mesostructures for Additive Manufacturing
,”
Mater. Des.
,
142
, pp.
114
123
.
332.
Bielecki
,
D.
,
Patel
,
D.
,
Rai
,
R.
, and
Dargush
,
G. F.
,
2021
, “
Multi-stage Deep Neural Network Accelerated Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
64
(
6
), pp.
3473
3487
.
333.
Patel
,
D.
,
Bielecki
,
D.
,
Rai
,
R.
, and
Dargush
,
G.
,
2022
, “
Improving Connectivity and Accelerating Multiscale Topology Optimization Using Deep Neural Network Techniques
,”
Struct. Multidiscipl. Optim.
,
65
(
4
), pp.
1
19
.
334.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods. Appl. Mech. Eng.
,
346
, pp.
1118
1135
.
335.
Kollmann
,
H. T.
,
Abueidda
,
D. W.
,
Koric
,
S.
,
Guleryuz
,
E.
, and
Sobh
,
N. A.
,
2020
, “
Deep Learning for Topology Optimization of 2d Metamaterials
,”
Mater. Des.
,
196
, p.
109098
.
336.
Zheng
,
L.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2021
, “
Data-Driven topology optimization of Spinodoid Metamaterials With Seamlessly Tunable Anisotropy
,”
Comput. Methods. Appl. Mech. Eng.
,
383
, p.
113894
.
You do not currently have access to this content.