Abstract

The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.

References

1.
Zhao
,
L.
,
He
,
X.
,
Xing
,
B.
,
Lu
,
Y.
,
Gu
,
F.
, and
Ball
,
A.
,
2015
, “
Influence of Sheet Thickness on Fatigue Behavior and Fretting of Self-piercing Riveted Joints in Aluminum Alloy 5052
,”
Mater. Des.
,
87(6)
, pp.
1010
1017
.
2.
Li
,
D.
,
Chrysanthou
,
A.
,
Patel
,
I.
, and
Williams
,
G.
,
2017
, “
Self-piercing Riveting—A Review
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5
), pp.
1777
1824
.
3.
Huang
,
Z.-C.
,
Zhang
,
Y.-K.
,
Lin
,
Y.-C.
, and
Jiang
,
Y.-Q.
,
2022
, “
Physical Property and Failure Mechanism of Self-piercing Riveting Joints Between Foam Metal Sandwich Composite Aluminum Plate and Aluminum Alloy
,”
J. Materials Res. Technol.
,
17
, pp.
139
149
.
4.
He
,
X.
,
Zhao
,
L.
,
Deng
,
C.
,
Xing
,
B.
,
Gu
,
F.
, and
Ball
,
A.
,
2015
, “
Self-piercing Riveting of Similar and Dissimilar Metal Sheets of Aluminum Alloy and Copper Alloy
,”
Mater. Des. (1980–2015)
,
65
, pp.
923
933
.
5.
Wang
,
J.
,
Zhang
,
G.
,
Zheng
,
X.
,
Li
,
J.
,
Li
,
X.
,
Zhu
,
W.
, and
Yanagimoto
,
J.
,
2021
, “
A Self-piercing Riveting Method for Joining of Continuous Carbon Fiber Reinforced Composite and Aluminum Alloy Sheets
,”
Composite Struct.
,
259
, p.
113219
.
6.
Fu
,
Y.
,
Downey
,
A. R.
,
Yuan
,
L.
,
Zhang
,
T.
,
Pratt
,
A.
, and
Balogun
,
Y.
,
2022
, “
Machine Learning Algorithms for Defect Detection in Metal Laser-Based Additive Manufacturing: A Review
,”
J. Manuf. Processes
,
75
, pp.
693
710
.
7.
Gong
,
Y.
,
Shao
,
H.
,
Luo
,
J.
, and
Li
,
Z.
,
2020
, “
A Deep Transfer Learning Model for Inclusion Defect Detection of Aeronautics Composite Materials
,”
Composite Struct.
,
252
, p.
112681
.
8.
Amosov
,
O. S.
,
Amosova
,
S. G.
, and
Iochkov
,
I. O.
,
2021
, “
Defects Detection and Recognition in Aviation Riveted Joints by Using Ultrasonic Echo Signals of Non-destructive Testing
,”
IFAC-PapersOnLine
,
54
(
1
), pp.
484
489
.
9.
Chen
,
G.
,
Sheng
,
B.
,
Luo
,
R.
, and
Jia
,
P.
,
2022
, “
A Parallel Strategy for Predicting the Quality of Welded Joints in Automotive Bodies Based on Machine Learning
,”
J. Manuf. Syst.
,
62
, pp.
636
649
.
10.
Wang
,
S.
,
Liu
,
C.
, and
Zhang
,
Y.
,
2022
, “
Fully Convolution Network Architecture for Steel-beam Crack Detection in Fast-stitching Images
,”
Mech. Syst. Signal. Process.
,
165
, p.
108377
.
11.
Zhang
,
H.
,
Wang
,
Y.
,
Lu
,
K.
,
Zhao
,
H.
,
Yu
,
D.
, and
Wen
,
J.
,
2021
, “
Sap-net: Deep Learning to Predict Sound Absorption Performance of Metaporous Materials
,”
Mater. Des.
,
212
, p.
110156
.
12.
Zhou
,
S. K.
,
Le
,
H. N.
,
Luu
,
K.
,
Nguyen
,
H. V.
, and
Ayache
,
N.
,
2021
, “
Deep Reinforcement Learning in Medical Imaging: A Literature Review
,”
Medical Image Anal.
,
73
, p.
102193
.
13.
Su
,
Y.
,
Tao
,
F.
,
Jin
,
J.
,
Wang
,
T.
,
Wang
,
Q.
, and
Wang
,
L.
,
2020
, “
Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021007
.
14.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
Nblstm: Noisy and Hybrid Convolutional Neural Network and Blstm-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
.
15.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Thakar
,
S.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Image-Based Surface Defect Detection Using Deep Learning: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
040801
.
16.
Ren
,
M.
,
Shen
,
R.
, and
Gong
,
Y.
,
2022
, “
A Surface Defect Detection Method Via Fusing Multi-level Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
051005
.
17.
Wong
,
V. W. H.
,
Ferguson
,
M.
,
Law
,
K. H.
,
Lee
,
Y. -T. T.
, and
Witherell
,
P.
,
2022
, “
Segmentation of Additive Manufacturing Defects Using U-Net
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031005
.
18.
Bochkovskiy
,
A.
,
Wang
,
C.-Y.
, and
Liao
,
H.-Y. M.
,
2020
, “
YOLOv4: Optimal Speed and Accuracy of Object Detection
,”
Computer Vis. Pattern Recog.
, pp.
1
17
.
19.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-cnn: Towards Real-Time Object Detection With Region Proposal Networks
,”
Adv. Neural Inf. Processing Syst.
,
28
, pp.
1
15
.
20.
Zhou
,
C.
,
Shen
,
X.
,
Wang
,
P.
,
Wei
,
W.
,
Sun
,
J.
,
Luo
,
Y.
, and
Li
,
Y.
,
2021
, “
Bv-Net: Bin-Based Vector-Predicted Network for Tubular Solder Joint Detection
,”
Measurement
,
183
, p.
109821
.
21.
Pang
,
S.
,
Chen
,
M.
,
Ta
,
S.
,
Wu
,
H.
, and
Takamasu
,
K.
,
2022
, “
Void and Solder Joint Detection for Chip Resistors Based on X-Ray Images and Deep Neural Networks
,”
Microelectronics Reliab.
,
135
, p.
114587
.
22.
Tian
,
R.
, and
Jia
,
M.
,
2022
, “
DCC-CenterNet: A Rapid Detection Method for Steel Surface Defects
,”
Measurement
,
187
, p.
110211
.
23.
Wang
,
R.
, and
Cheung
,
C. F.
,
2022
, “
DCC-CenterNet-Based Defect Detection for Additive Manufacturing
,”
Expert. Syst. Appl.
,
188
, p.
116000
.
24.
Lin
,
S.
,
Zhao
,
L.
,
Wang
,
S.
,
Islam
,
M. S.
,
Wei
,
W.
,
Huo
,
X.
, and
Guo
,
Z.
,
2023
, “
Non-destructive Monitoring of Forming Quality of Self-piercing Riveting Via a Lightweight Deep Learning
,”
Sci. Rep.
,
13
(
1
), p.
6083
.
25.
Xu
,
L.
,
Xue
,
H.
,
Bennamoun
,
M.
,
Boussaid
,
F.
, and
Sohel
,
F.
,
2021
, “
Atrous Convolutional Feature Network for Weakly Supervised Semantic Segmentation
,”
Neurocomputing
,
421
, pp.
115
126
.
26.
Zhou
,
Z.
,
He
,
Z.
, and
Jia
,
Y.
,
2020
, “
Afpnet: A 3d Fully Convolutional Neural Network With Atrous-Convolution Feature Pyramid for Brain Tumor Segmentation Via MRI Images
,”
Neurocomputing
,
402
, pp.
235
244
.
27.
Cai
,
Y.
,
Liu
,
Y.
,
Shen
,
C.
,
Jin
,
L.
,
Li
,
Y.
, and
Ergu
,
D.
,
2022
, “
Arbitrarily Shaped Scene Text Detection With Dynamic Convolution
,”
Pattern Recognition
,
127
, p.
108608
.
28.
Duan
,
Z.
,
Zhang
,
T.
,
Luo
,
X.
, and
Tan
,
J.
,
2021
, “
DCKN: Multi-Focus Image Fusion Via Dynamic Convolutional Kernel Network
,”
Signal Process.
,
189
, p.
108282
.
29.
Zhou
,
X.
,
Wang
,
D.
, and
Krähenbühl
,
P.
,
2019
, “
Objects as Points
,” Preprint arXiv:1904.07850.
30.
Ren
,
S.
,
Sun
,
J.
,
He
,
K.
, and
Zhang
,
X.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
CVPR
,
2
, pp.
1
12
.
31.
Yu
,
F.
, and
Koltun
,
V.
,
2015
, “
Multi-Scale Context Aggregation by Dilated Convolutions
,”
International Conference on Learning Representations
,
San Juan, Puerto Rico
,
May 2–4
.
32.
Dai
,
J.
,
Qi
,
H.
,
Xiong
,
Y.
,
Li
,
Y.
,
Zhang
,
G.
,
Hu
,
H.
, and
Wei
,
Y.
,
2017
, “
Deformable Convolutional Networks
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
764
773
.
33.
Liu
,
W.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Szegedy
,
C.
,
Reed
,
S.
,
Fu
,
C.-Y.
, and
Berg
,
A. C.
,
2016
, “
SSD: Single Shot Multibox Detector
,”
European Conference on Computer Vision
,
Amsterdam, The Netherlands
,
Oct. 11–14
, pp.
21
37
.
34.
Lin
,
T.-Y.
,
Goyal
,
P.
,
Girshick
,
R.
,
He
,
K.
, and
Dollár
,
P.
,
2017
, “
Focal Loss for Dense Object Detection
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
2980
2988
.
You do not currently have access to this content.