Abstract

The design dataset is the backbone of data-driven design. Ideally, the dataset should be fairly distributed in both shape and property spaces to efficiently explore the underlying relationship. However, the classical experimental design focuses on shape diversity and thus yields biased exploration in the property space. Recently developed methods either conduct subset selection from a large dataset or employ assumptions with severe limitations. In this paper, fairness- and uncertainty-aware data generation (FairGen) is proposed to actively detect and generate missing properties starting from a small dataset. At each iteration, its coverage module computes the data coverage to guide the selection of the target properties. The uncertainty module ensures that the generative model can make certain and thus accurate shape predictions. Integrating the two modules, Bayesian optimization determines the target properties, which are thereafter fed into the generative model to predict the associated shapes. The new designs, whose properties are analyzed by simulation, are added to the design dataset. This constructs an active learning mechanism that iteratively samples new data to improve data representativeness and machine learning model performance. An S-slot design dataset case study was implemented to demonstrate the efficiency of FairGen in auxetic structural design. Compared with grid and randomized sampling, FairGen increased the coverage score at twice the speed and significantly expanded the sampled region in the property space. As a result, the generative models trained with FairGen-generated datasets showed consistent and significant reductions in mean absolute errors.

References

1.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
, et al
,
2018
, “
Data-Driven Multi-scale Multi-physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.
2.
Pilarski
,
S.
,
Staniszewski
,
M.
,
Villeneuve
,
F.
, and
Varro
,
D.
,
2019
, “
On Artificial Intelligence for Simulation and Design Space Exploration in Gas Turbine Design
,”
Proceedings of the 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)
,
Munich, Germany
,
Sept. 15–20
, IEEE, pp.
170
174
.
3.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Padgan: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
4.
Jang
,
S.
,
Yoo
,
S.
, and
Kang
,
N.
,
2022
, “
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
,”
Comput. Aided Des.
,
146
, pp.
103225
.
5.
Agrawal
,
A.
, and
McComb
,
C.
,
2023
, “
Reinforcement Learning for Efficient Design Space Exploration With Variable Fidelity Analysis Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041004
.
6.
Wang
,
L.
,
Chan
,
Y.-C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-Driven Metamaterial Design With Laplace-Beltrami Spectrum as ‘Shape-DNA’
,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2613
2628
.
7.
Sun
,
H.
, and
Ma
,
L.
,
2020
, “
Generative Design by Using Exploration Approaches of Reinforcement Learning in Density-Based Structural Topology Optimization
,”
Designs
,
4
(
2
), p.
10
.
8.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
9.
Malashkhia
,
L.
,
Liu
,
D.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2023
, “
Physics-Constrained Bayesian Neural Network for Bias and Variance Reduction
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011012
.
10.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2023
, “
Multifidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031008
.
11.
Ling
,
C.
,
Kuo
,
W.
, and
Xie
,
M.
,
2022
, “
An Overview of Adaptive-Surrogate-Model-Assisted Methods for Reliability-Based Design Optimization
,”
IEEE Trans. Reliab.
,
72
(
3
), pp.
1243
1264
.
12.
Nakamura
,
G.
, and
Potthast
,
R.
,
2015
,
Inverse Modeling
,
IOP Publishing
,
Bristol, UK
.
13.
Suresh
,
H.
, and
Guttag
,
J.
,
2021
, “
A Framework for Understanding Sources of Harm Throughout the Machine Learning Life Cycle
,”
Equity and Access in Algorithms, Mechanisms, and Optimization
,
New York
,
October
, pp.
1
9
.
14.
Lee
,
D.
,
Chan
,
Y.-C.
,
Chen
,
W.
,
Wang
,
L.
, and
Chen
,
W.
,
2022
, “
t-METASET: Task-Aware Generation of Metamaterial Datasets by Diversity-Based Active Learning
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, American Society of Mechanical Engineers, p. V03AT03A011.
15.
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “
METASET: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031707
.
16.
Catania
,
B.
,
Guerrini
,
G.
, and
Accinelli
,
C.
,
2022
, “
Fairness & Friends in the Data Science Era
,”
AI Soc.
,
38
, pp.
1
11
.
17.
Shahbazi
,
N.
,
Lin
,
Y.
,
Asudeh
,
A.
, and
Jagadish
,
H.
,
2022
, “
A Survey on Techniques for Identifying and Resolving Representation Bias in Data
,”
ACM Comput. Surv.
,
55
(
13
), pp.
1
39
.
18.
Kapusuzoglu
,
B.
,
Mahadevan
,
S.
,
Matsumoto
,
S.
,
Miyagi
,
Y.
, and
Watanabe
,
D.
,
2022
, “
Adaptive Surrogate Modeling for High-Dimensional Spatio-temporal Output
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), pp.
300
.
19.
Zhang
,
Q.
,
Wu
,
Y.
,
Lu
,
L.
, and
Qiao
,
P.
,
2022
, “
An Adaptive Dendrite-HDMR Metamodeling Technique for High-Dimensional Problems
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081701
.
20.
Sun
,
Q.
,
Bai
,
C.
,
Geng
,
H.
, and
Yu
,
B.
,
2021
, “
Deep Neural Network Hardware Deployment Optimization Via Advanced Active Learning
,”
Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)
,
Grenoble, France
,
Feb. 1–5
, IEEE, pp.
1510
1515
.
21.
Wang
,
Y.
,
Franzon
,
P. D.
,
Smart
,
D.
, and
Swahn
,
B.
,
2020
, “
Multi-fidelity Surrogate-Based Optimization for Electromagnetic Simulation Acceleration
,”
ACM Trans. Des. Autom. Electron. Syst.
,
25
(
5
), pp.
1
21
.
22.
Kolesnikov
,
V.
,
Pashkov
,
D.
,
Belyak
,
O.
,
Guda
,
A.
,
Danilchenko
,
S.
,
Manturov
,
D.
,
Novikov
,
E.
,
Kudryakov
,
O.
,
Guda
,
S.
, and
Soldatov
,
A.
,
2023
, “
Design of Double Layer Protective Coatings: Finite Element Modeling and Machine Learning Approximations
,”
Acta Astronaut.
,
204
, pp.
869
877
.
23.
Tan
,
Y. T.
,
Kunapareddy
,
A.
, and
Kobilarov
,
M.
,
2018
, “
Gaussian Process Adaptive Sampling Using the Cross-Entropy Method for Environmental Sensing and Monitoring
,”
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Queensland, Australia
,
May 21–25
, IEEE, pp.
6220
6227
.
24.
Xu
,
Y.
,
Zheng
,
Z.
,
Arora
,
K.
,
Senesky
,
D. G.
, and
Wang
,
P.
,
2022
, “
Hall Effect Sensor Design Optimization With Multi-physics Informed Gaussian Process Modeling
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
25.
Liu
,
Z.
,
Renteria
,
A.
,
Zheng
,
Z.
,
Wang
,
P.
, and
Li
,
Y.
,
2022
, “
Design of Additively Manufactured Functionally Graded Cellular Structures
,”
Proceedings of the IISE Annual Conference
,
Seattle, WA
,
May 24
, pp.
1
6
.
26.
Xie
,
J.
,
Zhang
,
C.
,
Sun
,
L.
, and
Zhao
,
Y. F.
,
2022
, “
Fairness- and Uncertainty-Aware Data Generation for Data-Driven Design
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
, American Society of Mechanical Engineers, p. V002T002A045.
27.
Asudeh
,
A.
,
Shahbazi
,
N.
,
Jin
,
Z.
, and
Jagadish
,
H.
,
2021
, “
Identifying Insufficient Data Coverage for Ordinal Continuous-Valued Attributes
,”
Proceedings of the 2021 International Conference on Management of Data
,
China
,
June 20–25
, pp.
129
141
.
28.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.
29.
Boots
,
B.
,
Sugihara
,
K.
,
Chiu
,
S. N.
, and
Okabe
,
A.
,
2009
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
,
Hoboken, NJ
.
30.
Hora
,
S. C.
,
1996
, “
Aleatory and Epistemic Uncertainty in Probability Elicitation With an Example From Hazardous Waste Management
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
217
223
.
31.
Hüllermeier
,
E.
, and
Waegeman
,
W.
,
2021
, “
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
,”
Mach. Learn.
,
110
(
3
), pp.
457
506
.
32.
Lakshminarayanan
,
B.
,
Pritzel
,
A.
, and
Blundell
,
C.
,
2018
, “
Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles
,”
31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
December
.
33.
Bishop
,
C. M.
,
1994
,
Mixture Density Networks
,
Aston University
,
Birmingham, UK
.
34.
Javid
,
F.
,
Liu
,
J.
,
Rafsanjani
,
A.
,
Schaenzer
,
M.
,
Pham
,
M. Q.
,
Backman
,
D.
,
Yandt
,
S.
, et al
,
2017
, “
On the Design of Porous Structures With Enhanced Fatigue Life
,”
Extreme Mech. Lett.
,
16
, pp.
13
17
.
35.
Zhang
,
C.
,
Xie
,
J.
,
Shanian
,
A.
,
Kibsey
,
M.
, and
Zhao
,
Y. F.
,
2023
, “
A Hybrid Deep Learning Approach for the Design of 2D Low Porosity Auxetic Metamaterials
,”
Eng. Appl. Artif. Intell.
,
123
, p.
106413
.
36.
Saxena
,
K. K.
,
Das
,
R.
, and
Calius
,
E. P.
,
2016
, “
Three Decades of Auxetics Research—Materials With Negative Poisson's Ratio: A Review
,”
Adv. Eng. Mater.
,
18
(
11
), pp.
1847
1870
.
37.
Lawrence
,
P. G.
,
Roper
,
W.
,
Morris
,
T. F.
, and
Guillard
,
K.
,
2020
, “
Guiding Soil Sampling Strategies Using Classical and Spatial Statistics: A Review
,”
Agron. J.
,
112
(
1
), pp.
493
510
.
38.
Zhang
,
F.
,
Cheng
,
L.
,
Wu
,
M.
,
Xu
,
X.
,
Wang
,
P.
, and
Liu
,
Z.
,
2020
, “
Performance Analysis of Two-Stage Thermoelectric Generator Model Based on Latin Hypercube Sampling
,”
Energy Convers. Manage.
,
221
, p.
113159
.
39.
Edelsbrunner
,
H.
, and
Seidel
,
R.
,
1985
, “
Voronoi Diagrams and Arrangements
,”
Proceedings of the First Annual Symposium on Computational Geometry
,
Baltimore, MD
,
June 5–7
, pp.
251
262
.
40.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.