Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The precision in forming complex double-walled hollow turbine blades significantly influences their cooling efficiency, making the selection of appropriate casting process parameters critical for achieving fine-casting blade formation. However, the high cost associated with real blade casting necessitates strategies to enhance product formation rates and mitigate cost losses stemming from the overshoot phenomenon. We propose a machine learning (ML) data-driven framework leveraging an enhanced whale optimization algorithm (WOA) to estimate product formation under diverse process conditions to address this challenge. Complex double-walled hollow turbine blades serve as a representative case within our proposed framework. We constructed a database using simulation data, employed feature engineering to identify crucial features and streamline inputs, and utilized a whale optimization algorithm-back-propagation neural network (WOA-BP) as the foundational ML model. To enhance WOA-BP’s performance, we introduce an optimization algorithm, the improved chaos whale optimization-back-propagation (ICWOA-BP), incorporating cubic chaotic mapping adaptation. Experimental evaluation of ICWOA-BP demonstrated an average mean absolute error of 0.001995 mm, reflecting a 36.21% reduction in prediction error compared to conventional models, as well as two well-known optimization algorithms (particle swarm optimization (PSO), quantum-based avian navigation optimizer algorithm (QANA)). Consequently, ICWOA-BP emerges as an effective tool for early prediction of dimensional quality in complex double-walled hollow turbine blades.

References

1.
Ren
,
S.
,
Bu
,
K.
,
Mou
,
S.
,
Zhang
,
R.
, and
Bai
,
B.
,
2023
, “
Control of Dimensional Accuracy of Hollow Turbine Blades During Investment Casting
,”
J. Manuf. Process.
,
99
(
8
), pp.
548
562
.
2.
Wang
,
D.
,
He
,
B.
,
Liu
,
S.
,
Liu
,
C.
, and
Fei
,
L.
,
2016
, “
Dimensional Shrinkage Prediction Based on Displacement Field in Investment Casting
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
201
208
.
3.
Dong
,
Y.
,
Li
,
X.
,
Zhao
,
Q.
,
Yang
,
J.
, and
Dao
,
M.
,
2017
, “
Modeling of Shrinkage During Investment Casting of Thin-Walled Hollow Turbine Blades
,”
J. Mater. Process. Technol.
,
244
(
6
), pp.
190
203
.
4.
Fordal
,
J. M.
,
Schjølberg
,
P.
,
Helgetun
,
H.
,
Skjermo
,
T. Ø.
,
Wang
,
Y.
, and
Wang
,
C.
,
2023
, “
Application of Sensor Data Based Predictive Maintenance and Artificial Neural Networks to Enable Industry 4.0
,”
Adv. Manuf.
,
11
(
2
), pp.
248
263
.
5.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2021
, “
Modeling, Analysis, and Optimization of Dimensional Accuracy of FDM-Fabricated Parts Using Definitive Screening Design and Deep Learning Feedforward Artificial Neural Network
,”
Adv. Manuf.
,
9
(
1
), pp.
115
129
.
6.
Ferreira
,
C.
, and
Gonçalves
,
G.
,
2022
, “
Remaining Useful Life Prediction and Challenges: A Literature Review on the Use of Machine Learning Methods
,”
J. Manuf. Syst.
,
63
(
4
), pp.
550
562
.
7.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(
7
), pp.
144
156
.
8.
Deng
,
F.
,
Rui
,
X.
,
Lu
,
S.
,
Liu
,
Z.
,
Sun
,
H.
, and
Volk
,
W.
,
2023
, “
Deep Learning-Based Inline Monitoring Approach of Mold Coating Thickness for Al-Si Alloy Permanent Mold Casting
,”
Int. J. Adv. Manuf. Technol.
,
130
(
11
), pp.
1
9
.
9.
Yang
,
F.
,
Zhao
,
W.
,
Ru
,
Y.
,
Pei
,
Y.
,
Li
,
S.
,
Gong
,
S.
, and
Xu
,
H.
,
2023
, “
Deep Learning Accelerates the Development of Ni-Based Single Crystal Superalloys: A Physical-Constrained Neural Network for Creep Rupture Life Prediction
,”
Mater. Des.
,
232
(
8
), p.
112174
.
10.
Lee
,
J.
,
Lee
,
Y. C.
, and
Kim
,
J. T.
,
2020
, “
Fault Detection Based on One-Class Deep Learning for Manufacturing Applications Limited to an Imbalanced Database
,”
J. Manuf. Syst.
,
57
(
10
), pp.
357
366
.
11.
Ke
,
K.-C.
, and
Huang
,
M.-S.
,
2020
, “
Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network
,”
Polymers
,
12
(
8
), p.
1812
.
12.
Liu
,
Z.
,
Song
,
Y.
,
Tang
,
R.
,
Duan
,
G.
, and
Tan
,
J.
,
2023
, “
Few-Shot Defect Recognition of Metal Surfaces Via Attention-Embedding and Self-Supervised Learning
,”
J. Intell. Manuf.
,
34
(
8
), pp.
3507
3521
.
13.
Obregon
,
J.
,
Hong
,
J.
, and
Jung
,
J.-Y.
,
2021
, “
Rule-Based Explanations Based on Ensemble Machine Learning for Detecting Sink Mark Defects in the Injection Moulding Process
,”
J. Manuf. Syst.
,
60
(
7
), pp.
392
405
.
14.
Ge
,
Z.
,
Song
,
Z.
, and
Gao
,
F.
,
2013
, “
Self-Training Statistical Quality Prediction of Batch Processes With Limited Quality Data
,”
Ind. Eng. Chem. Res.
,
52
(
2
), pp.
979
984
.
15.
Lyu
,
Y.
,
Wen
,
Z.
, and
Chen
,
A.
,
2023
, “
A Novel Transfer Learning Approach Based on Deep Degradation Feature Adaptive Alignment for Remaining Useful Life Prediction With Multi-condition Data
,”
J. Intell. Manuf.
12
), pp.
1
19
.
16.
Zhu
,
Z.
,
Ferreira
,
K.
,
Anwer
,
N.
,
Mathieu
,
L.
,
Guo
,
K.
, and
Qiao
,
L.
,
2020
, “
Convolutional Neural Network for Geometric Deviation Prediction in Additive Manufacturing
,”
Proc. CIRP
,
91
(
8
), pp.
534
539
.
17.
Li
,
L.
, and
Anand
,
S.
,
2020
, “
Hatch Pattern Based Inherent Strain Prediction Using Neural Networks for Powder Bed Fusion Additive Manufacturing
,”
J. Manuf. Process.
,
56
(
8
), pp.
1344
1352
.
18.
Ciccarelli
,
M.
,
Corradini
,
F.
,
Germani
,
M.
,
Menchi
,
G.
,
Mostarda
,
L.
,
Papetti
,
A.
, and
Piangerelli
,
M.
,
2023
, “
SPECTRE: A Deep Learning Network for Posture Recognition in Manufacturing
,”
J. Intell. Manuf.
,
34
(
8
), pp.
3469
3481
.
19.
O’Donnell
,
J.
, and
Yoon
,
H.-S.
,
2024
, “
Determination of Multi-component Failure in Automotive System Using Deep Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
2
), p.
021005
.
20.
Zhang
,
B.
,
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
In-Process Monitoring of Porosity During Laser Additive Manufacturing Process
,”
Addit. Manuf.
,
28
, pp.
497
505
.
21.
Zhang
,
J.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning-Based Tensile Strength Prediction in Fused Deposition Modeling
,”
Comput. Ind.
,
107
(
5
), pp.
11
21
.
22.
Li
,
Z.
,
Zhang
,
Z.
,
Shi
,
J.
, and
Wu
,
D.
,
2019
, “
Prediction of Surface Roughness in Extrusion-Based Additive Manufacturing With Machine Learning
,”
Rob. Comput.-Integr. Manuf.
,
57
(
6
), pp.
488
495
.
23.
Bartlett
,
J. L.
,
Jarama
,
A.
,
Jones
,
J.
, and
Li
,
X.
,
2020
, “
Prediction of Microstructural Defects in Additive Manufacturing From Powder Bed Quality Using Digital Image Correlation
,”
Mater. Sci. Eng. A.
,
794
(
9
), p.
140002
.
24.
Liu
,
Y.
,
Wu
,
Q.
,
Wang
,
P.
, and
Zhuang
,
W.
,
2023
, “
Forming Process Prediction of a Self-Piercing Riveted Joint in Carbon Fibre Reinforced Composites and Aluminium Alloy Based on Deep Learning
,”
J. Manuf. Process.
,
106
(
11
), pp.
453
464
.
25.
Wu
,
Y.
,
Meng
,
Y.
, and
Shao
,
C.
,
2022
, “
End-to-End Online Quality Prediction for Ultrasonic Metal Welding Using Sensor Fusion and Deep Learning
,”
J. Manuf. Process.
,
83
(
11
), pp.
685
694
.
26.
Mongan
,
P. G.
,
Hinchy
,
E. P.
,
O’Dowd
,
N. P.
, and
McCarthy
,
C. T.
,
2021
, “
Quality Prediction of Ultrasonically Welded Joints Using a Hybrid Machine Learning Model
,”
J. Manuf. Process.
,
71
(
11
), pp.
571
579
.
27.
Zhou
,
H.
,
Yu
,
K.
,
Luo
,
Q.
,
Luo
,
L.
,
Du
,
W.
, and
Wang
,
S.
,
2022
, “
Design Methods and Strategies for Forward and Inverse Problems of Turbine Blades Based on Machine Learning
,”
J. Thermal Sci.
,
31
(
1
), pp.
82
95
.
28.
Wang
,
Z.
,
Yin
,
Y.
,
Wang
,
Y.
,
Sun
,
T.
, and
Luan
,
Y.
,
2022
, “
Similarity Characteristics of Geometric Scaling Matrix Cooling Channels in Turbine Blade
,”
Appl. Therm. Eng.
,
212
(
7
), p.
118601
.
29.
Kamath
,
R.
,
Venkobarao
,
V.
,
Kopold
,
R.
, and
Subramaniam
,
C.
,
2021
, “
Machine Learning-Based Turbine Vane Position Estimation for Advanced Engine Airpath Control
,”
SAE Int. J. Eng.
,
14
(
6
), pp.
833
852
.
30.
Guiying
,
N.
,
Dunqian
,
C.
, and
Yongquan
,
Z.
,
2019
, “
Improved Differential Evolution Algorithm for Solving 0-1 Programming Problems
,”
J. Syst. Sci. Math. Sci.
,
39
(
1
), pp.
120
132
. .
in Chinese
.
31.
Zhong
,
M.
, and
Long
,
W.
,
2017
, “
Whale Optimization Algorithm Based on Stochastic Adjustment Control Parameter
,”
Sci. Technol. Eng.
,
17
(
12
), pp.
68
73
. .
in Chinese
.
32.
Palacios
,
A.
,
2002
, “
Cycling Chaos in One-Dimensional Coupled Iterated Maps
,”
Int. J. Bifurcat. Chaos
,
12
(
08
), pp.
1859
1868
.
33.
Feng
,
J.
,
Zhang
,
J.
,
Zhu
,
X.
, and
Lian
,
W.
,
2017
, “
A Novel Chaos Optimization Algorithm
,”
Multim. Tools Appl.
,
76
(
16
), pp.
17405
17436
.
34.
Wang
,
G.-Y.
, and
Yuan
,
F.
,
2013
, “
Cascade Chaos and Its Dynamic Characteristics
,”
Acta Phys. Sinica
,
62
(
2
), p.
020506
. .
in Chinese
.
35.
Zhang
,
C.-X.
,
Zhou
,
K.-Q.
,
Ye
,
S.-Q.
, and
Zain
,
A. M.
,
2021
, “
An Improved Cuckoo Search Algorithm Utilizing Nonlinear Inertia Weight and Differential Evolution for Function Optimization Problem
,”
IEEE Access
,
9
(
11
), pp.
161352
161373
.
36.
Ding
,
H.
,
Wu
,
Z.
, and
Zhao
,
L.
,
2020
, “
Whale Optimization Algorithm Based on Nonlinear Convergence Factor and Chaotic Inertial Weight
,”
Concurr. Comput.: Practice Exp.
,
32
(
24
), p.
e5949
.
37.
Long
,
W.
,
Cai
,
S.
,
Jiao
,
J.
,
Tang
,
M.
, and
Wu
,
T.
,
2017
, “
Improved Whale Optimization Algorithm for Large Scale Optimization Problems
,”
Syst. Eng.-Theory Practice
,
37
(
11
), pp.
2983
2994
. .
in Chinese
.
38.
Yue
,
Y.
,
You
,
H.
,
Wang
,
S.
, and
Cao
,
L.
,
2021
, “
Improved Whale Optimization Algorithm and Its Application in Heterogeneous Wireless Sensor Networks
,”
Int. J. Distrib. Sensor Netw.
,
17
(
5
), p.
155014772110181
.
39.
Cao
,
D.
,
Xu
,
Y.
,
Yang
,
Z.
,
Dong
,
H.
, and
Li
,
X.
,
2023
, “
An Enhanced Whale Optimization Algorithm With Improved Dynamic Opposite Learning and Adaptive Inertia Weight Strategy
,”
Complex Intell. Syst.
,
9
(
1
), pp.
767
795
.
40.
Mostafa Bozorgi
,
S.
, and
Yazdani
,
S.
,
2019
, “
IWOA: An Improved Whale Optimization Algorithm for Optimization Problems
,”
J. Comput. Des. Eng.
,
6
(
3
), pp.
243
259
.
41.
Lin
,
M.
,
Wang
,
Z.
,
Chen
,
D.
, and
Zheng
,
W.
,
2022
, “
Particle Swarm-Differential Evolution Algorithm With Multiple Random Mutation
,”
Appl. Soft. Comput.
,
120
(
5
), p.
108640
.
42.
Bai
,
B.
,
Li
,
Z.
,
Hao
,
M.
,
Li
,
Y.
,
Zhang
,
K.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Turbine Blade Endwall Heat Transfer and Film Cooling Performance With Multigap Jets and Film Holes
,”
ASME J. Eng. Gas Turbines Power.
,
145
(
11
), p.
111020
.
43.
Xu
,
Q.
,
Wang
,
P.
, and
Du
,
Q.
,
2022
, “
DDES Investigation of the Cooling Performance and Turbulence Characteristics of the Turbine Vane Trailing Edge Cutback Slot With Fan-Shaped Holes
,”
Int. Commun. Heat Mass Transf.
,
138
(
11
), p.
106405
.
44.
Yeranee
,
K.
,
Rao
,
Y.
,
Yang
,
L.
, and
Li
,
H.
,
2022
, “
Enhanced Thermal Performance of a Pin-Fin Cooling Channel for Gas Turbine Blade by Density-Based Topology Optimization
,”
Int. J. Therm. Sci.
,
181
(
11
), p.
107783
.
45.
Dong
,
Y.-W.
,
Shao
,
P.-F.
,
Guo
,
X.
,
Xu
,
B.
,
Yin
,
C.-P.
, and
Tan
,
Z.-y.
,
2023
, “
Deformation Characterization Method of Typical Double-Walled Turbine Blade Structure During Casting Process
,”
J. Iron Steel Res. Int.
,
30
(
2
), pp.
1
20
.
46.
Zamani
,
H.
,
Nadimi-Shahraki
,
M. H.
, and
Gandomi
,
A. H.
,
2021
, “
QANA: Quantum-Based Avian Navigation Optimizer Algorithm
,”
Eng. Appl. Artif. Intell.
,
104
(
9
), p.
104314
.
47.
Nadimi-Shahraki
,
M. H.
,
2023
, “
An Effective Hybridization of Quantum-Based Avian Navigation and Bonobo Optimizers to Solve Numerical and Mechanical Engineering Problems
,”
J. Bionic Eng.
,
20
(
3
), pp.
1361
1385
.
You do not currently have access to this content.