This paper presents a new inhomogeneous solid modeling paradigm for engineering design. The proposed paradigm can represent, model, and render multidimensional physical attributes across any volumetric objects of complicated geometry and topology. A modeled object is formulated with a trivariate simplex spline defined over a tetrahedral decomposition of its three-dimensional domain. Heterogeneous material attributes associated with solid geometry can be easily modeled and edited by manipulating the control vectors and∕or associated knots of trivariate simplex splines. We also develop a feature-sensitive fitting algorithm that can reconstruct a compact, continuous trivariate simplex spline from measured, structured, or unstructured volumetric grids of real-world inhomogeneous objects. In addition, we propose a fast direct rendering algorithm for interactive data analysis and visualization of the simplex spline volumes. Our experiments demonstrate that the proposed paradigm augments the current engineering design techniques with new and unique advantages.

1.
Raviv
,
A.
, and
Elber
,
G.
, 1999, “
Three Dimensioinal Freeform Sculpting Via Zero Sets of Scalar Trivariate Functions
,”
Proceedings of the 5th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, MI, USA, pp.
246
257
.
2.
Hua
,
J.
, and
Qin
,
H.
, 2004, “
Haptics-based Dynamic Implicit Solid Modeling
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
10
(
5
), pp.
574
586
.
3.
Schmitt
,
B.
,
Pasko
,
A.
, and
Schlick
,
C.
, 2001, “
Constructive Modeling of FRep Solids Using Spline Volumes
,”
Proceedings of the 6th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, MI, USA, pp.
321
322
.
4.
Martin
,
W.
, and
Cohen
,
E.
, 2001, “
Representation and Extraction of Volumetric Attributes Using Trivariate Splines: a Mathematical Framework
,”
Proceedings of the 7th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, MI, USA, pp.
234
240
.
5.
Dahmen
,
W.
,
Micchelli
,
C.
, and
Seidel
,
H.
, 1992, “
Blossoming Begets B-spline Bases Built Better by B-patches
,”
Math. Comput.
0025-5718,
59
(
199
), pp.
97
115
.
6.
de Boor
,
C.
, 1976, “
Splines as Linear Combinations of B-splines
,”
Approximation Theory II
,
Academic Press
, New York, pp.
1
47
.
7.
Greiner
,
G.
, and
Seidel
,
H.
, 1994, “
Modeling with Triangular B-splines
,”
IEEE Comput. Graphics Appl.
0272-1716,
14
(
2
), pp.
56
60
.
8.
Pfeifle
,
R.
, and
Seidel
,
H.
, 1994, “
Faster Evaluation of Quadratic Bivariate DMS Spline Surfaces
,”
Proceedings of the Graphics Interface
, A. K. Peters, Ltd., Banff, Alberta, Canada, pp.
182
189
.
9.
Pfeifle
,
R.
, and
Seidel
,
H.
, 1995, “
Fitting Triangular B-splines to Functional Scattered Data
,”
Proceedings of the Graphics Interface
, A. K. Peters, Ltd., Québec, Québec, Canada, pp.
80
88
.
10.
Qin
,
H.
, and
Terzopoulos
,
D.
, 1997, “
Triangular NURBS and Their Dynamic Generalizations
,”
Comput. Aided Geom. Des.
0167-8396,
14
(
4
), pp.
325
347
.
11.
He
,
Y.
, and
Qin
,
H.
, 2004, “
Surface Reconstruction with Triangular B-splines
,”
Proceedings of the Geometric Modeling and Processing
, IEEE Press, Beijing, China, pp.
279
291
.
12.
Seidel
,
H.
, and
Vermeulen
,
A.
, 1994, “
Simplex Splines Support Surprisingly Strong Symmetric Structures and Subdivision
,”
Curves and Surfaces II
,
A. K.
Peters
, ed.,
P.
Laurent
,
A.
Mehaute
, and
L.
Schumaker
, Eds., A. K. Peters Ltd., Chamonix-Mont-Blanc, France, pp.
443
455
.
13.
Joe
,
B.
, 1991, “
Construction of Three-Dimensional Triangulations Using Local Transformations
,”
Comput. Aided Geom. Des.
0167-8396,
8
, pp.
123
142
.
14.
Edelsbrunner
,
H.
, and
Shah
,
N.
, 1992, “
Incremental Topological Flipping Works for Regular Triangulations
,”
Proceedings of the ACM Symposium on Computational Geometry
, Berlin, Germany, pp.
43
52
.
15.
Shewchuk
,
J.
, 1997, “
Delaunay Refinement Mesh Generation
,” Ph.D. thesis, School of Computer Science, Carnegie Mellon University.
16.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2004, “
Heterogeneous Material Modeling with Distance Fields
,”
Comput. Aided Geom. Des.
0167-8396,
21
(
3
), pp.
215
242
.
17.
Zhou
,
Y.
,
Chen
,
B.
, and
Kaufman
,
A.
, 1997, “
Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data
,”
Proceedings of the IEEE Visualization Conference
, Phoenix, AZ, USA, pp.
135
142
.
18.
Liu
,
A.
, and
Joe
,
B.
, 1994, “
Relationship between Tetrahedron Shape Measures
,”
Biomaterials
0142-9612,
34
(
2
), pp.
268
287
.
19.
Hong
,
W.
, and
Kaufman
,
A.
, 2003, “
Feature Preserved Volume Simplification
,”
Proceedings of the 8th ACM Symposium on Solid Modeling and Applications
, Seattle, WA, USA, pp.
328
333
.
20.
Raviv
,
A.
, and
Elber
,
G.
, 2001, “
Interactive Direct Rendering of Trivariate B-spline Scalar Functions
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
7
(
2
), pp.
109
119
.
You do not currently have access to this content.