We describe and analyze a new algorithm for rounding standard G-code tool paths. The joints of circular/linear elements are replaced by small segments of Pythagorean hodograph (PH) curves so that the final curve is globally continuous. The PH segments are produced via a second order Hermite interpolation. We discuss some implementation details and investigate the error introduced by replacing a part of G-code by a PH curve segment. We also report results of tests within an industrial environment that demonstrate an increase in path velocity while decreasing peak acceleration.
1.
Koren
, Y.
, 1983, Computer Control Manufacturing Systems
, McGraw-Hill
, New York.2.
Huang
, J.-T.
, and Yang
, D. C. H.
, 1992, “A Generalized Interpolator for Command Generation of Parametric Curves in Computer Controlled Machines
,” Proceedings of the Japan/USA Symposium on Flexible Automation
, ASME
, New York, Vol. 1
, pp. 393
–399
.3.
Koren
, Y.
, 1976, “Interpolator for a Computer Numerical Control System
,” IEEE Trans. Comput.
0018-9340, C-25
, pp. 32
–37
.4.
Shpitalni
, M.
, Koren
, Y.
, and Lo
, C. C.
, 1994, “Realtime Curve Interpolators
,” Comput.-Aided Des.
0010-4485, 26
, pp. 832
–838
.5.
Wings
, E.
, and Jüttler
, B.
, 2004, “Generating Tool Paths on Surfaces for a Numerically Controlled Calotte Cutting System
,” Comput.-Aided Des.
0010-4485, 36
, pp. 325
–331
.6.
Yang
, D. C. H.
, and Kong
, T.
, 1994, “Parametric Interpolator Versus Linear Interpolator for Precision CNC Machining
,” Comput.-Aided Des.
0010-4485, 26
, pp. 225
–234
.7.
Farouki
, R. T.
, 2002, “Pythagorean Hodograph Curves
,” Handbook of Computer Aided Geometric Design
, G.
Farin
, J.
Hoschek
, and M.-S.
Kim
, eds., North-Holland
, Amsterdam, pp. 405
–427
.8.
Farouki
, R. T.
, Manjunathaiah
, J.
, Nichlas
, D.
, Yuan
, G. F.
, and Jee
, S.
, 1998, “Variable-Feedrate CNC Interpolators for Constant Material Removal Rates Along Pythagorean-Hodograph Curves
,” Comput.-Aided Des.
0010-4485, 30
, pp. 631
–640
.9.
Farouki
, R. T.
, and Shah
, S.
, 1996, “Real-Time CNC Interpolators for Pythagorean-Hodograph Curves
,” Comput. Aided Geom. Des.
0167-8396, 13
, pp. 583
–600
.10.
Tsai
, Y.-F.
, Farouki
, R. T.
, and Feldman
, B.
, 2001, “Performance Analysis of CNC Interpolators for Time-Dependent Feedrates Along PH Curves
,” Comput. Aided Geom. Des.
0167-8396, 18
, pp. 245
–265
.11.
Šír
, Z.
, and Jüttler
, B.
, 2007, “C2 Hermite Interpolation by Spatial Pythagorean Hodograph Curves
,” Math. Comput.
0025-5718, 76
, pp. 1373
–1391
.12.
Šír
, Z.
, and Jüttler
, B.
, 2005, “Constructing Acceleration Continuous Tool Paths Using Pythagorean Hodograph Curves
,” Mech. Mach. Theory
0094-114X, 40
, pp. 1258
–1272
.13.
Dietz
, R.
, Hoschek
, J.
, and Jüttler
, B.
, 1993, “An Algebraic Approach to Curves and Surfaces on the Sphere and on Other Quadrics
,” Comput. Aided Geom. Des.
0167-8396, 10
, pp. 211
–229
.14.
Kuipers
, J. B.
, 1999, Quaternions and Rotation Sequences
, Princeton University Press
, Princeton, NJ.15.
Ge
, Q. J.
, and Ravani
, B.
, 1991, “Computer Aided Geometric Design of Motion Interpolants
,” Proc. ASME Design Automatic Conf.
, ASME
, New York, DE-Vol. 32-2
, pp. 33
–41
.16.
de Groote
, H. F.
, 1974/1975, “On the Complexity of Quaternion Multiplication
,” Inf. Process. Lett.
0020-0190, 3
, pp. 177
–179
.17.
Hoschek
, J.
, and Lasser
, D.
, 1996, Fundamentals of Computer Aided Geometric Design
, AK Peters
, Wellesley, MA.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.