In multi-axis machining of dies and molds with complex sculptured surfaces, numerical control (NC) simulation/verification is a must for the avoidance of expensive rework and material waste. Despite the fact that NC simulation has been extensively used by industries for many years, efficient, accurate, and reliable view-independent simulation of multi-axis NC machining still remains a difficult challenge. This paper presents the use of adaptive voxel data structure in conjunction with the modeling of a universal cutter for the development of an efficient and reliable multi-axis (typically five-axis) simulation procedure. The octree-based voxel representation of the workpiece saves a significant amount of memory space without sacrificing the simulation accuracy. Rendering of the voxel-based model is view independent and does not suffer from any aliasing effect, due to the real-time triangulation of the boundary surfaces using an extended marching cube algorithm. Implicit algebraic equations are used to model the automatically programed tool geometry, which can represent a universal cutter with high precision. In addition, the proposed method allows users to perform error analysis and gouging detection by comparing the machined surfaces with the original computer-aided design (CAD) model. Illustration of the implementation and experimental results demonstrate that the proposed method is reliable, accurate, and highly efficient.

1.
Choi
,
B. K.
, and
Jerard
,
R. B.
, 1998,
Sculptured Surface Machining: Theory and Applications
,
Kluwer Academic
,
Dordrecht
.
2.
Huang
,
Y.
, and
Oliver
,
J. H.
, 1995, “
Integrated Simulation, Error Assessment, and Tool Path Correction for Five-Axis NC Milling
,”
J. Manuf. Syst.
0278-6125,
14
(
5
), pp.
331
334
.
3.
Voelcker
,
H. B.
, and
Hunt
,
W. A.
, 1981, “
The Role of Solid Modeling in Machining Process Modeling and NC Verification
,” SAE Technical Paper No. 810195.
4.
Hunt
,
W. A.
, and
Voelcker
,
H. B.
, 1982, “
An Exploratory Study of Automatic Verification of Programs for Numerically Controlled Machine Tools
,” Production Automation Project Technical Memorandum No. 34.
5.
El-Mounayri
,
H.
,
Elbestawi
,
M. A.
,
Spence
,
A. D.
, and
Bedi
,
S.
, 1997, “
General Geometric Modeling Approach for Machining Process Simulation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
(
4
), pp.
237
247
.
6.
Spence
,
A. D.
, and
Li
,
Z.
, 2001, “
Parallel Processing for 2-1/2D Machining Simulation
,”
ACM Symposium on Solid and Physical Modeling
, Ann Arbor, MI, pp.
140
148
.
7.
Fleisig
,
R. V.
, and
Spence
,
A. D.
, 2005, “
Techniques for Accelerating B-Rep Based Parallel Machining Simulation
,”
Comput.-Aided Des.
0010-4485,
37
(
12
), pp.
1229
1240
.
8.
Liu
,
S. Q.
,
Ong
,
S. K.
,
Chen
,
Y. P.
, and
Nee
,
A. Y. C.
, 2006, “
Real-Time Dynamic Level-of-Detail Management for Three-Axis NC Milling Simulation
,”
Comput.-Aided Des.
0010-4485,
38
(
4
), pp.
378
391
.
9.
Fleisig
,
R. V.
, and
Spence
,
A. D.
, 2005, “
B-Rep Based Parallel Machining Simulation
,”
Proceedings 19th International Symposium on High Performance Computing Systems and Applications
,
IEEE Computer Society
,
Washington, DC
, pp.
83
89
.
10.
Weinert
,
K.
,
Du
,
S.
,
Damm
,
P.
, and
Stautner
,
M.
, 2004, “
Swept Volume Generation for the Simulation of Machining Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
617
628
.
11.
Van Hook
,
T.
, 1986, “
Real Time Shaded NC Milling Display
,”
Comput. Graph.
0097-8930,
20
(
4
), pp.
15
20
.
12.
Saito
,
T.
, and
Takahashi
,
T.
, 1991, “
NC Machining With G-Buffer Method
,”
Comput. Graph.
0097-8930,
25
, pp.
207
216
.
13.
Glaeser
,
G.
, and
Gröller
,
M. E.
, 1997, “
Efficient Volume-Generation During the Simulation of NC-Milling
,”
Proceedings of the International Workshop on Visualization and Mathematics
, Berlin-Dahlem, Germany, pp.
89
106
.
14.
Chung
,
Y. C.
,
Park
,
J. W.
,
Shin
,
H.
, and
Choi
,
B. K.
, 1998, “
Modeling the Surface Swept by a Generalized Cutter for NC Verification
,”
Comput.-Aided Des.
0010-4485,
30
(
8
), pp.
587
94
.
15.
Maeng
,
S. R.
,
Baek
,
N.
,
Shin
,
S. Y.
, and
Choi
,
B. K.
, 2003, “
A Z-map Update Method for Linearly Moving Tools
,”
Comput.-Aided Des.
0010-4485,
35
(
11
), pp.
995
1009
.
16.
Maeng
,
S. R.
,
Baek
,
N.
,
Shin
,
S. Y.
, and
Choi
,
B. K.
, 2004, “
A Fast NC Simulation Method for Circularly Moving Tools in the Z-Map Environment
,”
Proceedings of Geometric Modeling and Processing
, Washington, DC, pp.
319
330
.
17.
Lee
,
S. K.
, and
Ko
,
S. L.
, 2002, “
Development of Simulation System for Machining Process Using Enhanced Z Map Model
,”
J. Mater. Process. Technol.
0924-0136,
130-131
(
20
), pp.
608
617
.
18.
Kim
,
Y. H.
, and
Ko
,
S. L.
, 2005, “
Development of a Machining Simulation System Using the Octree Algorithm
,”
Proceedings International Conference on Computational Science and Its Applications
,
Springer
,
Singapore
, Vol.
3482
, pp.
1089
1098
.
19.
Kim
,
Y. H.
, and
Ko
,
S. L.
, 2006, “
Improvement of Cutting Simulation Using the Octree Method
,”
Adv. Manuf. Technol.
,
28
(
11-12
), pp.
1152
1160
.
20.
Fussell
,
B. K.
,
Jerard
,
R. B.
, and
Hemmett
,
J. G.
, 2003, “
Modeling of Cutting Geometry and Forces for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
(
4
), pp.
333
346
.
21.
Jang
,
D.
,
Kim
,
K.
, and
Jung
,
J.
, 2000, “
Voxel-Based Virtual Multi-Axis Machining
,”
Adv. Manuf. Technol.
,
16
(
10
), pp.
709
713
.
22.
Ayala
,
D.
,
Brunet
,
P.
,
Juan
,
R.
, and
Navazo
,
I.
, 1985, “
Object Representation by Means of Nonminimal Division Quadtrees and Octrees
,”
ACM Trans. Graphics
0730-0301,
4
(
1
), pp.
41
59
.
23.
Roy
,
U.
, and
Xu
,
Y.
, 1999, “
Computation of a Geometric Model of a Machined Part from its NC Machining Programs
,”
Comput.-Aided Des.
0010-4485,
31
(
6
), pp.
401
411
.
24.
Chappel
,
I. T.
, 1983, “
The Use of Vectors to Simulate Material Removed by Numerically Controlled Milling
,”
Comput.-Aided Des.
0010-4485,
15
(
3
), pp.
156
158
.
25.
Chang
,
K. Y.
, and
Goodman
,
E. D.
, 1991, “
A Method for NC Tool Path Interference Detection for A Multi-Axis Milling System
,”
Control of Manufacturing Process
,
ASME
, New York, Vol.
28
, pp.
23
30
.
26.
Oliver
,
J. H.
, and
Goodman
,
E. D.
, 1990, “
Direct Dimensional NC Verification
,”
Comput.-Aided Des.
0010-4485,
22
(
1
), pp.
3
10
.
27.
Jerard
,
R. B.
,
Drysdale
,
R. L.
,
Hauck
,
K.
,
Schaudt
,
B.
, and
Magewick
,
J.
, 1989, “
Methods for Detecting Errors in Numerically Controlled Machining of Sculptured Surface
,”
IEEE Comput. Graphics Appl.
0272-1716,
9
(
1
), pp.
26
39
.
28.
Yau
,
H. T.
,
Tsou
,
L. S.
, and
Tong
,
Y. C.
, 2005, “
Adaptive NC Simulation for Multi-Axis Solid Machining
,”
Computer-Aided Design and Applications
,
2
(
1
), pp.
95
104
.
29.
Lorensen
,
W. E.
, and
Cline
,
H. E.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm
,”
ACM SIGGRAPH Computer Graphics
,
21
(
4
), pp.
163
169
.
30.
Bloomenthal
,
J.
, 1997,
Introduction to Implicit Surfaces
,
Morgan Kaufmann
,
San Francisco, CA
.
31.
Krak
,
I. H.
, 1986,
Numerical Control Programming in APT
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Yau
,
H. T.
,
Chuang
,
J. M.
, and
Lee
,
Y. S.
, 2004, “
NC Machining of Triangulated Sculptured Surfaces in STL Format With a Generalized Cutter
,”
Int. J. Prod. Res.
0020-7543,
42
(
13
), pp.
2573
2598
.
33.
Kobbelt
,
L. P.
,
Botsch
,
M.
,
Schwanecke
,
U.
, and
Seidel
,
H. P.
, 2001, “
Feature Sensitive Surface Extraction from Volume Data
,”
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM SIGGRAPH Computer Graphics
, pp.
57
66
.
34.
Gottschalk
,
S.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 1996, “
OBB-Tree: A Hierarchical Structure for Rapid Interference Detection
,”
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
,
ACM SIGGRAPH Computer Graphics
, pp.
171
180
.
You do not currently have access to this content.