Faithfully obtaining design specifications from customer requirements is essential for successful designs. The natural lingual, inexact, incomplete, and vague attributes of customer requirements make it very difficult to map customer requirements to design specifications. In general design process, the design specifications are determined by designers based on their experience and intuition, and often a certain target value is set for a specification. However, it is on one hand very difficult, on the other hand unreasonable, so a suitable limit range rather than a certain value is preferred at the beginning of design, especially at the concept design process. In this paper, a simplified systematic approach of transforming customer requirements to design specifications is proposed. First, a two-stepped clustering approach for grouping customer requirements and design specifications based on the house of quality matrix is presented, by which the mapping is limited to within each group. To further simplify the inference mapping rules of customer requirements and design specifications, the minimal condition inference mapping rules for each design specification are extracted based on rough set theory. In the end, a suitable value range is determined for a specification by applying the fuzzy rule matrix.

1.
Jiao
,
J. X.
, and
Zhang
,
Y. Y.
, 2005, “
Product Portfolio Identification Based on Association Rule Mining
,”
Comput.-Aided Des.
0010-4485,
37
, pp.
149
172
.
2.
Christopher
,
M. C.
,
McDonald
,
M.
, and
Wills
,
G.
, 1980,
Introducing Marketing
,
Pan
,
London
.
3.
Tarasewich
,
P.
, and
Nair
,
S. K.
, 2001, “
Designer-Moderated Product Design
,”
IEEE Trans. Eng. Manage.
0018-9391,
48
(
2
), pp.
175
188
.
4.
Tseng
,
M. M.
, and
Jiao
,
J. X.
, 1997, “
A Variant Approach to Product Definition by Recognizing Functional Requirement Patterns
,”
Comput. Ind. Eng.
0360-8352,
33
(
3–4
), pp.
629
633
.
5.
Karsak
,
E. E.
, 2004, “
Fuzzy Multiple Objective Programming Framework to Prioritize Design Requirements in Quality Function Deployment
,”
Comput. Ind. Eng.
0360-8352,
47
(
2–3
), pp.
149
163
.
6.
Clausing
,
D.
, 1994,
Total Quality Development: A Step-by-Step Guide to World-Class Concurrent Engineering
,
ASME
,
New York
.
7.
Hauser
,
J. R.
, and
Clausing
,
D.
, 1988, “
The House of Quality
,”
Harvard Bus. Rev.
0017-8012,
66
(
3
), pp.
63
73
.
8.
Akao
,
Y.
, 1990,
Quality Function Deployment: Integrating Customer Requirements into Product Design
,
Productivity
,
Cambridge
.
9.
Chan
,
L. K.
, and
Wu
,
M. L.
, 2002, “
Quality Function Deployment: A Literature Review
,”
Eur. J. Oper. Res.
0377-2217,
143
, pp.
463
497
.
10.
Chan
,
L. K.
, and
Wu
,
M. L.
, 2002, “
Quality Function Deployment: A Comprehensive Review of Its Concepts and Methods
,”
Qual. Eng.
0898-2112,
15
(
1
), pp.
23
35
.
11.
Masud
,
A. S. M.
, and
Dean
,
E. B.
, 1993, “
Using Fuzzy Sets in Quality Function Deployment
,”
Proceedings of the Second Industrial Engineering Research Conference
, Los Angeles, CA, May 26–27.
12.
Khoo
,
L. P.
, and
Ho
,
N. C.
, 1996, “
Framework of A Fuzzy Quality Function Deployment System
,”
Int. J. Prod. Res.
0020-7543,
34
(
2
), pp.
299
311
.
13.
Kalargeros
,
N.
, and
Gao
,
J. X.
, 1998, “
QFD: Focusing on Its Simplification and Easy Computerization Using Fuzzy Logic Principles
,”
Int. J. Veh. Des.
0143-3369,
19
(
3
), pp.
315
325
.
14.
Chan
,
L. K.
,
Kao
,
H. P.
,
Ng
,
A.
, and
Wu
,
M. L.
, 1999, “
Rating the Importance of Customer Needs in Quality Function Deployment by Fuzzy and Entropy Methods
,”
Int. J. Prod. Res.
0020-7543,
37
(
11
), pp.
2499
2518
.
15.
Wang
,
J.
, 1999, “
Fuzzy Outranking Approach to Prioritize Design Requirements in Quality Function Deployment
,”
Int. J. Prod. Res.
0020-7543,
37
(
4
), pp.
899
916
.
16.
Kim
,
K. J.
,
Moskowitz
,
H.
,
Dhingra
,
A.
, and
Evans
,
G.
, 2000, “
Fuzzy Multicriteria Models for Quality Function Deployment
,”
Eur. J. Oper. Res.
0377-2217,
121
(
3
), pp.
504
518
.
17.
Sohn
,
S. Y.
, and
Choi
,
I. S.
, 2001, “
Fuzzy QFD for Supply Chain Management With Reliability Consideration
,”
Reliab. Eng. Syst. Saf.
0951-8320,
72
(
3
), pp.
327
334
.
18.
Vanegas
,
L. V.
, and
Labib
,
A. W.
, 2001, “
A Fuzzy Quality Function Deployment (FQFD) Model For Deriving Optimum Targets
,”
Int. J. Prod. Res.
0020-7543,
39
(
1
), pp.
99
120
.
19.
Dawson
,
D.
, and
Askin
,
R. G.
, 1999, “
Optimal New Product Design Using Quality Function Deployment With Empirical Value Functions
,”
Qual. Reliab. Eng. Int
0748-8017,
15
(
1
), pp.
17
32
.
20.
Moskowitz
,
H.
, and
Kim
,
K. J.
, 1997, “
QFD Optimizer: A Novice Friendly Quality Function Deployment Decision Support System for Optimizing Product Designs
,”
Comput. Ind. Eng.
0360-8352,
32
(
3
), pp.
641
655
.
21.
Cristiano
,
J. J.
,
White
,
C. C.
, and
Liker
,
J. K.
, 2001, “
Application of Multiattribute Decision Analysis to Quality Function Deployment for Target Setting
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
31
(
3
), pp.
366
382
.
22.
Harding
,
J. A.
,
Popplewell
,
K.
, and
Omar
,
A. R.
, 2001, “
An Intelligent Information Framework Relating CRs and Product Characteristics
,”
Comput. Ind.
,
44
(
1
), pp.
51
65
. 0166-3615
23.
Fung
,
R. Y. K.
,
Law
,
D. S. T.
, and
Ip
,
W. H.
, 1999, “
Design Targets Determination for Inter-Dependent Product Attributes in QFD Using Fuzzy Inference
,”
Integr. Manuf. Syst.
0957-6061,
10
(
6
), pp.
376
384
.
24.
Shin
,
J. S.
, and
Kim
,
K. J.
, 2000, “
Complexity Reduction of A Design Problem in QFD Using Decomposition
,”
J. Intell. Manuf.
0956-5515,
11
(
4
), pp.
339
354
.
25.
Pawlak
,
Z.
, 1982, “
Rough Sets
,”
Int. J. Comput. Inf. Sci.
0091-7036,
11
(
5
), pp.
341
356
.
26.
Pawlak
,
Z.
, 1991,
Rough Sets
,
Kluwer Academic
,
Dordrecht
.
27.
Pawlak
,
Z.
, and
Skowron
,
A.
, 2007, “
Rudiments of Rough Sets
,”
Inf. Sci.
,
177
, pp.
3
27
. 0020-0255
28.
Ziarko
,
W.
, 1994, “
Rough Sets and Knowledge Discovery: An Overview
,”
Rough Sets, Fuzzy Sets and Knowledge Discovery
,
Proceedings of the International Workshop on Rough Sets and Knowledge Discovery (RSKD ‘93)
,
Springer Verlag
,
London
, pp.
11
15
.
29.
Yao
,
Y. Y.
,
Wong
,
S. K. M.
, and
Lin
,
T. Y. A.
, 1997, “
Review of Rough Sets Models
,”
Rough Sets and Data Mining – Analysis for Imprecise Data
,
Y. T.
Lin
and
N.
Cercone
, eds.,
Kluwer
,
Boston, MA
pp.
47
67
.
30.
Pawlak
,
Z.
, 2004, “
Some Issues on Rough Sets
,”
Transactions on Rough Sets I
,
J. F.
Peters
and
A.
Skowron
, eds.,
Springer-Verlag
,
Heidelberg, Berlin
, pp.
1
58
.
31.
Komorowski
,
J.
,
Pawlak
,
Z.
,
Polkowski
,
L.
, and
Skowron
,
A.
, 1999, “
Rough Sets: A Tutorial
,”
Rough Fuzzy Hybridization
,
S. K.
Pal
and
A.
Skowron
, eds.,
Springer
,
Singapore
, pp.
3
98
.
32.
Polkowski
,
L.
, and
Skowron
,
A.
, 1998,
Rough Sets in Knowledge Discovery 1: Methodology and Applications
,
Physica-Verlag
,
Heidelberg
.
33.
Polkowski
,
L.
, and
Skowron
,
A.
, 1998,
Rough Sets in Knowledge Discovery 2: Applications
,
Physica-Verlag
,
Heidelberg
.
34.
Polkowski
,
L.
,
Tsumoto
,
S.
, and
Lin
,
T. Y.
, 2000,
Rough Set Methods and Applications
,
Physica-Verlag
,
Heidelberg
.
35.
Kryszkiewicz
,
M.
, 1999, “
Rules in Incomplete Information Systems
,”
Inf. Sci.
,
113
(
3–4
), pp.
271
292
. 0020-0255
36.
Leung
,
Y.
,
Wu
,
W. Z.
, and
Zhang
,
W. X.
, 2006, “
Knowledge Acquisition in Incomplete Information Systems: A Rough Set Approach
,”
Eur. J. Oper. Res.
0377-2217,
168
(
1
), pp.
164
180
.
37.
Mi
,
J. S.
,
Wu
,
W. Z.
, and
Zhang
,
W. X.
, 2004, “
Approaches to Knowledge Reductions Based on Variable Precision Rough Sets Model
,”
Inf. Sci.
,
159
(
3–4
), pp.
255
272
. 0020-0255
38.
Skowron
,
A.
, and
Rauszer
,
C.
, 1992,
The Discernibility Matrices and Functions in Information Systems, Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory
,
R.
Slowinski
, ed.,
Kluwer Academic
,
London
, pp.
331
362
.
39.
Slezak
,
D.
, and
Ziarko
,
W.
, 2005, “
The Investigation of the Bayesian Rough Set Model
,”
Int. J. Approx. Reason.
0888-613X,
40
(
1–2
), pp.
81
91
.
40.
Slowinski
,
R.
, and
Vanderpooten
,
D.
, 2000, “
A Generalized Definition of Rough Approximations Based on Similarity
,”
IEEE Trans. Knowl. Data Eng.
1041-4347,
12
, pp.
331
336
.
41.
Stefanowski
,
J.
, 1998, “
On Rough Set Based Approaches to Induction of Decision Rules
,”
Rough Sets in Knowledge Discovery 1
,
L.
Polkowski
and
A.
Skowron
, eds.,
Physica-Verlag
,
Heidelberg
, pp.
500
529
.
42.
Stefanowski
,
J.
, and
Vanderpooten
,
D.
, 1994, “
A General Two Stage Approach to Rule Induction for Examples
,”
Rough Sets, Fuzzy Sets and Knowledge Discovery
,
W.
Ziarko
, ed.,
Springer-Verlag
,
Berlin
, pp.
317
325
.
43.
Wu
,
W. Z.
,
Zhang
,
W. X.
, and
Li
,
H. Z.
, 2003, “
Knowledge Acquisition in Incomplete Fuzzy Information Systems Via Rough Set Approach
,”
Expert Syst.
,
20
(
5
), pp.
280
286
. 0266-4720
44.
Zhang
,
W. X.
,
Mi
,
J. S.
, and
Wu
,
W. Z.
, 2003, “
Approaches to Knowledge Reductions in Inconsistent Systems
,”
Int. J. Intell. Syst.
0884-8173,
18
, pp.
989
1000
.
45.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Information and Control
,
8
, pp.
338
353
.
46.
Fung
,
R. Y. K.
,
Popplewell
,
K.
, and
Xie
,
J.
, 1998, “
An Intelligent Hybrid System for Customer Requirements Analysis and Product Attribute Targets Determination
,”
Int. J. Prod. Res.
0020-7543,
36
(
1
), pp.
13
34
.
47.
Thurston
,
D.
, and
Locascio
,
A.
, 1994, “
Quantifying the House of Quality for Optimal Product Design
,”
Proceedings of the ASME Design Theory and Methodology Conference
, Vol.
DE-68
, pp.
43
54
.
You do not currently have access to this content.