Computer-based engineering analysis is now a routine process in virtual product design. However, when an object becomes slender, i.e., beam, plate, or shell like, 3D computational analysis is known to slowdown, or even lead to erroneous results. Indeed, the recommended method for analyzing slender objects is to replace them with equivalent lower-dimensional entities. However, explicit geometric reduction and replacement is impractical during automated product design, and requires specialized software tools. In this paper, we therefore develop an implicit dimensional reduction method, where the reduction is achieved through an algebraic process. The proposed reduction method is computationally efficient, and numerically equivalent to explicit geometric reduction. Moreover, standard off-the-shelf 3D finite element packages can be used to implement the proposed methodology. The efficacy of the proposed method is demonstrated within the context of shape optimization. Finally, the related problem of “automatic slenderness-detection” is also addressed briefly.

2.
Reissner
,
E.
, 1985, “
Reflections on the Theory of Elastic Plates
,”
Appl. Mech. Rev.
0003-6900,
38
, pp.
1453
1464
.
3.
Jemielita
,
G.
, 1990, “
On Kinematical Assumptions of Refined Theories of Plates: A Survey
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
57
, pp.
1088
1091
.
4.
Wang
,
C. M.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
, 2000,
Shear Deformable Beams and Plates: Relationship to Classical Solutions
,
Elsevier
,
London
.
5.
Yang
,
H. T. Y.
,
Saigal
,
S.
,
Masud
,
A.
, and
Kapania
,
R. K.
, 2000, “
A Survey of Recent Shell Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
1–3
), pp.
101
127
.
6.
Blum
,
H.
, and
Nagel
,
R. N.
, 1978, “
Shape Description Using Weighted Symmetric Axis Features
,”
Pattern Recogn.
0031-3203,
10
, pp.
167
180
.
7.
Sherbrooke
,
E. C.
,
Patrikalakis
,
N. M.
, and
Wolter
,
F.-E.
, 1996, “
Differential and Topological Properties of Medial Axis Transforms
,”
Graph. Models Image Process.
1077-3169,
58
(
6
), pp.
574
592
.
8.
Choi
,
H.
,
Choi
,
S.
, and
Moon
,
H.
, 1997, “
Mathematical Theory of Medial Axis Transform
,”
Pac. J. Math.
0030-8730,
181
(
1
), pp.
57
88
.
9.
Donaghy
,
R. J.
,
McCune
,
W.
,
Bridgett
,
S. J.
,
Armstrong
,
C. G.
,
Robinson
,
D. J.
, and
McKeag
,
R. M.
, 1996, “
Dimensional Reduction of Analysis Models
,”
Proceedings of the Fifth International Meshing Roundtable
, Pittsburgh, PA, pp.
307
320
.
10.
Armstrong
,
C. G.
,
Robinson
,
D. J.
,
McKeag
,
R. M.
,
Li
,
T. S.
,
Bridgett
,
S. J.
,
Donaghy
,
R. J.
, and
McGleenan
,
C. A.
, 1995, “
Medials for Meshing and More
,”
Proceedings of the Fourth International Meshing Roundtable
, Albuquerque.
11.
Shim
,
K. W.
,
Monaghan
,
D. J.
, and
Armstrong
,
C. G.
, 2002, “
Mixed Dimensional Coupling in Finite Element Stress Analysis
,”
Eng. Comput.
0263-4759,
18
(
3
), pp.
241
252
.
12.
Suresh
,
K.
, 1998, “
Skeletal Formulations of Boundary Value Problems
,”
Mechanical Engineering
,
Cornell University
,
Ithaca
.
13.
Suresh
,
K.
, 2003, “
Generalization of the Mid-Element Based Dimensional Reduction
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
4
), pp.
308
314
.
14.
Foskey
,
M.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 2003, “
Efficient Computation of a Simplified Medial Axis
,”
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications
, Seattle, pp.
96
107
.
15.
Reddy
,
J. M.
, and
Turkiyyah
,
G. M.
, 1995, “
Computation of 3-D Skeletons Using a Generalized Delaunay Triangulation Technique
,”
Comput.-Aided Des.
0010-4485,
27
, pp.
677
694
.
16.
Sheehy
,
D. J.
,
Armstrong
,
C. G.
, and
Robinson
,
D. J.
, 1996, “
Shape Description by Medial Surface Construction
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
2
(
1
), pp.
62
72
.
17.
Sherbrooke
,
E. C.
,
Patrikalakis
,
N. M.
, and
Brisson
,
E.
, 1996, “
An Algorithm for the Medial Axis Transform of 3-D Polyhedral Solids
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
2
(
1
), pp.
44
61
.
18.
Turkiyyah
,
G. M.
,
Storti
,
D. W.
,
Ganter
,
M.
,
Chen
,
H.
, and
Vimawala
,
M.
, 1997, “
An Accelerated Triangulation Method for Computing the Skeletons of Free-Form Solid Models
,”
Comput.-Aided Des.
0010-4485,
29
(
1
), pp.
5
19
.
20.
Pilkey
,
W.
, 2002,
Analysis and Design of Elastic Beams
,
Wiley
,
New York
.
21.
Shames
,
I. H.
, and
Dym
,
C. L.
, 1985,
Energy and Finite Element Methods in Structural Mechanics
,
Hemisphere Publishing Corporation
,
New York
.
22.
Bischoff
,
M.
,
Wall
,
W. A.
,
Beltzinger
,
K. U.
, and
Ramm
,
E.
, 2004,
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
Borst
, and
J. R.
Hughes
, eds.,
Wiley
,
New York
, Vol.
2
, Chap. 3.
23.
Suresh
,
K.
, 2006, “
Skeletal Reduction of Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
66
(
4
), pp.
722
739
.
24.
Goldak
,
J.
,
Yu
,
X.
,
Knight
,
A.
, and
Dong
,
L.
, 1991, “
Constructing Discrete Medial Axis of 3-D Objects
,”
Int. J. Comput. Geom. Appl.
0218-1959,
1
(
3
), pp.
327
339
.
25.
Yang
,
Y.
,
Brock
,
O.
, and
Moll
,
R. N.
, 2004, “
Efficient and Robust Computation of an Approximated Medial Axis
,”
Proceedings of the ACM Symposium on Solid Modeling and Applications
, Genoa, Italy, pp.
15
24
.
26.
Braess
,
D.
, and
Kaltenbacher
,
M.
, 2007, “
Efficient 3D-Finite-Element-Formulation for Thin Mechanical and Piezoelectric Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
73
(
2
), pp.
147
161
.
27.
Jog
,
C. S.
, 2006, “
Topology Design of Three-Dimensional Structures Using Hybrid Finite Elements
,”
Proceedings of the IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
,
M. P.
Bendsøe
,
N.
Olhoff
, and
O.
Sigmund
, eds.,
Springer
,
Netherlands
, pp.
33
42
.
28.
Ramm
,
E.
, and
Wall
,
W. A.
, 2004, “
Shell Structures—A Sensitive Interrelation Between Physics and Numerics
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
, pp.
381
427
.
29.
Dorfmann
,
A.
, and
Nelson
,
R. B.
, 1995, “
Three-Dimensional Finite Elements for Analysing Thin Plate/Shell Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
3453
3482
.
30.
Hauptmann
,
R.
, and
Schweizerhof
,
K.
, 1998, “
A Systematic Development of ‘Solid-Shell’ Element Formulations for Linear and Non-Linear Analyses Employing Only Displacement Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
49
69
.
31.
Duster
,
A.
,
Broker
,
H.
, and
Rank
,
E.
, 2001, “
The P-Version of Finite Element Method for Three-Dimensional Curved Thin Walled Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
(
7
), pp.
673
703
.
32.
COMSOL
, 2005, FEMLAB 3.1, www.comsol.comwww.comsol.com
33.
MathWorks
, 2005, MATLAB, www.mathworks.comwww.mathworks.com
34.
Bhatti
,
M. A.
, 2005,
Fundamental Finite Element Analysis and Applications
, 1st ed.,
Wiley
,
New York
.
35.
Crisfield
,
M. A.
, 1996,
Non-Linear Finite Element Analysis of Solids and Structures
,
Wiley
,
New York
.
You do not currently have access to this content.