A balanced approach to shaping the closed-loop properties of the dissipative controllers for flexible structures is presented. In the balanced representation the properties of flexible structures are introduced, and a simple method of designing of the dissipative controllers is obtained. It relates the controller gains with the closed-loop pole locations. The examples illustrate the accuracy of the design method.

1.
Anderson
 
B. D. O.
,
1967
, “
A System Theory Criterion for Positive Real Matrices
,”
J. SIAM Control
, Vol.
5
, pp.
171
182
.
2.
Aubrun, J. N., 1980, “Theory of the Control of Structures by Low-Authority Controllers,” Journal of Guidance, Control, and Dynamics, Vol. 3.
3.
Aubrun, J. N., and Margulies, G., 1982, “Low-Authority Control Synthesis for Large Space Structures,” NASA Contractor Report 3495, Contract NASl-14887.
4.
Benhabib
 
R. J.
,
Iwens
 
R. P.
, and
Jackson
 
R. L.
,
1981
, “
Stability of Large Space Structure Control Systems Using Positivity Concepts
,”
Journal of Guidance and Control
, Vol.
4
, pp.
487
494
.
5.
Desoer, C. A., and Vidyasagar, M., 1975, Feedback Systems: Input-Output Properties, Academic Press, New York.
6.
Gawronski, W., 1994, “A Balanced LQG Compensator for Flexible Structures,” Automatica, Vol. 30.
7.
Gawronski, W., and Lim, K. B., 1994, “Balanced H and H2 Controllers,” Proc. 1994 American Control Conference, Baltimore, MD, pp. 1116–1122.
8.
Gawronski, W., and Juang, J. N., 1990, “Model Reduction for Flexible Structures,” Control and Dynamics Systems, C. T. Leondes, ed., Vol. 36, Academic Press, San Diego, CA, pp. 143–222.
9.
Gawronski
 
W.
, and
Williams
 
T.
,
1991
, “
Model Reduction for Flexible Space Structures
,”
Journal of Guidance, Control, and Dynamics
, Vol.
14
, pp.
68
76
.
10.
Golub, G. H., Van Loan, C. F., 1989, Matrix Computations, The Johns Hopkins University Press, Baltimore, MD.
11.
Gregory
 
C. Z.
,
1984
, “
Reduction of Large Flexible Spacecraft Models Using Internal Balancing Theory
,”
J. Guidance, Control and Dynamics
, Vol.
7
, pp.
725
732
.
12.
Jonckheere
 
A.
,
1984
, “
Principal Component Analysis of Flexible Systems—Open Loop Case
,”
IEEE Trans. Autom. Control
, Vol.
27
, pp.
1095
1097
.
13.
Joshi, S. M., 1989, Control of Large Flexible Space Structures, Springer, Berlin.
14.
Junkins, J. L., and Kim, Y., 1993, Introduction to Dynamics and Control of Flexible Structures, Published by the American Institute of Aeronautics and Astronautics, Washington, D.C.
15.
Lim, K. B., and Balas, G. J., 1992, “Line-of-Sight Control of the CSI Evolutionary Model: μ Control,” IEEE American Control Conf., Chicago, IL.
16.
Lim, K. B., Maghami, P. G., and Joshi, S. M., 1992, “Comparison of Controller Designs for an Experimental Flexible Structure,” IEEE Control Systems Magazine, pp. 108–118.
17.
McLaren
 
M. D.
, and
Slater
 
G. L.
,
1987
, “
Robust Multivariable Control of Large Space Structures Using Positivity
,”
Journal of Guidance, Control and Dynamics
, Vol.
10
, pp.
393
400
.
18.
Meirovitch, L., 1990, Dynamics and Control of Structures, Wiley, New York.
19.
Moore
 
B. C.
,
1981
, “
Principal Component Analysis in Linear Systems, Controllability, Observability and Model Reduction
,”
IEEE Trans. Autom. Control
, Vol.
26
, pp.
17
32
.
20.
Popov, V. M., 1973, Hyperstability of Automatic Control Systems, Springer, New York.
21.
Skelton
 
R. E.
,
1980
, “
Cost Decomposition of Linear Systems with Application to Model Reduction
,”
Int. J. of Control
, Vol.
32
, pp.
1031
1055
.
22.
Slater
 
G. L.
,
Bosse
 
A. B.
, and
Zhang
 
Q.
,
1992
, “
Robustness of Positive Real Controllers for Large Space Structures
,”
Journal of Guidance, Control, and Dynamics
, Vol.
15
, pp.
58
64
.
23.
Voth, C. T., Richards Jr., K. E., Schmitz, E., Gehling, R. N., and Morgenthaler, D. R., “Integrated Active and Passive Control Design Methodology for the LaRC CSI Evolutionary Model,” NASA Contractor Report 4580, Contract NAS1-19371, 1994.
24.
Wen
 
J. T.
,
1988
, “
Time Domain and Frequency Domain Conditions for Strict Positive Realness
,”
IEEE Trans. on Automat. Control
, Vol.
AC-33
, p.
988
992
.
25.
Willems
 
J. C.
,
1972
, “
Dissipative Dynamical Systems, Part I: General Theory, Part II: Linear Systems with Quadratic Supply Rates
,”
Arch. Rational Mech. and Anal
, Vol.
45
, pp.
321
351
.
26.
Willems
 
J. C.
,
1976
, “
Realization of Systems with Internal Passivity and Symmetry Constraints
,”
J. Franklin Institute
, Vol.
301
, pp.
605
620
.
27.
Williams
 
T.
,
1990
, “
Closed Form Grammians and Model Reduction for Flexible Space Structures
,”
IEEE Trans. on Automatic Control
, Vol.
AC-35
, pp.
379
382
.
This content is only available via PDF.
You do not currently have access to this content.