This paper presents a study of an electropneumatic system composed of two electropneumatic interfaces and a pneumatic cylinder. The model used is a simplified nonlinear model which takes into account the main nonlinearities. The main goal is to prove that the process with two controls can be made asymptotically stable by means of a regular (i.e., at least of class state feedback. To illustrate the performances obtained, with the proposed control, simulation results are given. [S0022-0434(00)01303-4]
Issue Section:
Technical Papers
1.
Scavarda, S., Kellal, A., and Richard, E., 1987, “Linearized models for an electropneumatic cylinder servovale system,” Proc. 3rd Int. Conf. on Adavanced Robotics ICAR’87, Versailles, France.
2.
Thomasset, D., Richard, E., Scavarda, S., Lin, X. F., Sesmat, S., and Bouhal, A., 1993, “Control of an Electropneumatic Servodrive: a State Affine or a Sliding Approach,” Proc. IFAC World Congress, Sydney, Australia, pp. 458–466.
3.
Le´vine, J., 1988, “Remarks on some worked out applications of nonlinear control theory,” New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences, Vol. 102, Springer-Verlag, New York, pp. 458–466.
4.
Richard, E., and Scavarda, S., 1989, “Non Linear Control of a Pneumatic Servodrive,” Proc. 2de Fluid Power Workshop on Components and Systems, Bath University, England.
5.
Richard
, E.
, and Scavarda
, S.
, 1992
, “De´couplage Non lineaire Pression/Position d’un axe e´lectropneumatique
,” API-AFCET Automatique
,26
, No. 1
, pp. 25
–34
.6.
Fossard, A. J., and Normand-Cyrot, D., 1993, “Syste`mes non line´aires, tome 3 commande, chapter 5 “Line´arisation entre´s-sorties et de´couplage par retour d’e´tat statique: trois e´tudes de cas,” Masson, Paris.
7.
Jurdjevic
, V.
, and Quinn
, J. P.
, 1978
, “Controllability and stability
,” J. Diff. Eqns.
, 28
, pp. 381
–389
.8.
Gauthier, J. P., and Bornard, G., 1981, “Outils et mode`les mathe´matiques pour l’automatique et la the´orie du signal, chapter Stabilization des syste`mes non line´aires,” Editions du CNRS, pp. 307–324.
9.
Lee
, K. K.
, and Arapostathis
, A.
, 1988
, “Remarks on smooth feedback stabilization of nonlinear system
,” Syst. Control Lett.
,10
, pp. 41
–44
.10.
Tsinias
, J.
, 1989
, “Sufficient Liapunov-like condition for stabilization
,” Math. Control Sig. Syst.
,2
, pp. 343
–357
.11.
Byrnes
, C. I.
, Isidori
, A.
, and Willems
, J. C.
, 1991
, “Passivity, feedback equivalence and the global stabilization of minimum phase nonlinear systems
,” IEEE Trans. Autom. Control
, 36
, No. 11
, Nov. pp. 1228
–1240
.12.
Outbib
, R.
, and Sallet
, G.
, 1992
, “Stabilizability of the angular velocity of a rigid body revisited
,” Syst. Control Lett.
,18
, pp. 93
–98
.13.
Blackburn, J. F., Reethof, G., and Shearer, J. L., 1966, “Mecanismes et servo-mecanismes fluide sous pression,” Tome 1, Dunod, Paris.
14.
Andersen, B. W., 1976, The Analysis and Design of Pneumatic Systems, Wiley, New York.
15.
Jebar, H. S., 1977, “Design of Pneumatic Actuator Systems,” Ph.D. thesis of University Nottingham.
16.
Comolet, R., 1979, “Mecanique experimentale des fluides,” Tome 1, Masson, Paris.
17.
LaSalle, J. P., and Lefschetz, S., 1961, Stability by Liapunov’s direct method with applications, Academic Press, New York.
Copyright © 2000
by ASME
You do not currently have access to this content.