In this paper, a gain scheduled sliding mode control (SMC) scheme is proposed for tracking control tasks of multilink robotic manipulators. In the new scheme, filtering techniques play the key role in acquiring equivalent control signals and scheduling the switching control gain automatically. Once the system enters the sliding motion, two classes of low-pass filters are introduced to work concurrently for the purpose of acquiring equivalent control, reducing the switching gain effectively, and as a result eliminating chattering. By virtue of equivalent control theory, one class of filters is designed to capture the “average” profile of the switching quantity, which is in proportion to the desired control input. Meanwhile, another class of low-pass filters is added to scale down the gain of the switching control. The convergence property of the proposed control scheme is rigorously analyzed in time domain and the frequency domain knowledge can be easily incorporated into the construction of the two classes of filters. Excellent tracking performance is achieved with the direct manipulation of switching control input using filtering technology and with the integration of both time domain and frequency domain system knowledge in controller design. [S0022-0434(00)01604-X]

1.
Utkin, V. I., 1978, Sliding Modes and Their Application to Variable Structure Systems, MIR Publishers, Moscow, pp. 41–77.
2.
Zinober, A. S. I. (Editor), 1994, Lecture Notes in Control and Information Sciences, Variable Structure and Lyapunov Control, Springer-Verlag, London.
3.
Edwards
,
C.
, and
Spurgeon
,
S. K.
,
1996
, “
Robust Output Tracking Using a Sliding Mode Controller/Observer
,”
Int. J. Control
,
64
, No.
5
, pp.
967
983
.
4.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Ozguner
,
U.
,
1999
, “
A Control Engineer’s Guide to Sliding Mode Control
,”
IEEE Transactions on Control Systems Technology
,
7
, No.
3
, pp.
328
342
.
5.
Utkin
,
V. I.
,
1977
, “
Variable Structure Systems with Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
, pp.
212
222
.
6.
Chern
,
T. L.
, and
Wu
,
Y. C.
,
1992
, “
Integral Variable Structure Control Approach for Robot Manipulators
,”
IEE Prod. Control Theory Appl.
,
139
, No.
2
, pp.
161
166
.
7.
Shyu
,
K. K.
,
Tasi
,
Y. W.
, and
Yung
,
C. F.
,
1992
, “
A Modified Variable Structure Controller
,”
Automatica
,
28
, No.
6
, pp.
1209
1213
.
8.
Kachroo
,
P.
, and
Tomizuka
,
M.
,
1996
, “
Chattering Reduction and Error Convergence in the Sliding Mode Control of a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
41
, No.
7
, pp.
1063
1068
.
9.
Xu
,
J. X.
,
Lee
,
T. H.
, and
Wang
,
M.
,
1998
, “
Self-Tuning Type Variable Structure Control Method for Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
8
, No.
13
, pp.
1133
1153
.
10.
Chien, C. J., and Fu, L. C., 1999, Adaptive Variable Structure Control, Newnes, Oxford, pp. 41–62.
11.
Bartolini
,
G.
, and
Ferrara
,
A.
,
1999
, “
On the Parameter Convergence Properties of a Combined vs/Adaptive Control Scheme During Sliding Motion
,”
IEEE Trans. Autom. Control
,
44
, No.
1
, pp.
70
76
.
12.
Chan
,
S. P.
,
1995
, “
Robust Sliding Mode Control of Robot Manipulators Using Internal Model
,”
Int. J. Robot. Autom.
,
10
, No.
2
, pp.
63
69
.
13.
Pandian
,
S. R.
, and
Hanmandlu
,
M.
,
1995
, “
Model-Based Sliding Mode Controller for Robot Manipulators
,”
Int. J. Robot. Autom.
,
10
, No.
1
, pp.
29
34
.
14.
Tzafestas
,
S.
,
Raibert
,
M.
, and
Tzafestas
,
C.
,
1996
, “
Robust Sliding-Mode Control Applied to a 5-Link Biped Robot
,”
J. Intell. Robot. Syst.
,
15
, No.
1
, pp.
67
133
.
15.
Habibi
,
S. R.
,
1999
, “
Sliding Mode Control of a Hydraulic Industrial Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, No.
2
, pp.
312
318
.
16.
Sadegh
,
N.
, and
Horowitz
,
R.
,
1990
, “
Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators
,”
Int. J. Robot. Res.
,
9
, No.
3
, pp.
74
92
.
17.
Liao
,
T. L.
,
Fu
,
L. C.
, and
Hsu
,
C. F.
,
1990
, “
Adaptive Robust Tracking of Nonlinear Systems and with an Application to a Robotic Manipulator
,”
Syst. Control Lett.
,
15
, pp.
339
348
.
18.
Fu
,
L. C.
,
1992
, “
Robust Adaptive Decentralized Control of Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
37
, pp.
106
110
.
19.
Yao
,
B.
,
Chan
,
S. P.
, and
Wang
,
D.
,
1994
, “
Variable Structure Adaptive Motion and Force Control of Robot Manipulators
,”
Automatica
,
30
, No.
9
, pp.
1473
1477
.
20.
Parra-Vega
,
V.
, and
Arimoto
,
S.
,
1995
, “
Exponentially Convergent Adaptive Sliding Mode Control of Robot Manipulators
,”
Int. J. Syst. Sci.
,
26
, No.
12
, pp.
2263
2276
.
21.
Tsaprounis
,
C. J.
, and
Aspragathos
,
N. A.
,
1999
, “
Sliding Mode with Adaptive Estimation Force Control of Robot Manipulators Interacting with an Unknown Passive Environment
,”
Robotica
,
17
, No.
4
, pp.
447
458
.
22.
Zhihong
,
M.
,
O’Day
,
M.
, and
Yu
,
X.
,
1999
, “
Robust Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators
,”
J. Intell. Robot. Syst.
,
24
, No.
1
, pp.
23
41
.
23.
Oh
,
S. R.
,
Bien
,
Z.
, and
Suh
,
I. H.
,
1988
, “
An Iterative Learning Control Method with Application to Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
4
, No.
5
, pp.
508
514
.
24.
Kuc
,
T. Y.
,
Lee
,
J. S.
, and
Nam
,
K.
,
1992
, “
Iterative Learning Control Theory for a Class of Nonlinear Dynamic Systems
,”
Automatica
,
28
, No.
6
, pp.
1215
1221
.
25.
Xu, J. X., Viswanthan, B., and Qu, Z. H., 2000, “Robust Learning Control for Robotic Manipulators with an Extension to a Class of Nonlinear Systems,” Int. J. Control, to appear.
26.
Slotine, J. J. E., and Li, W. P., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, New Jersey.
You do not currently have access to this content.