This article studies ultra-high-precision positioning with piezoactuators and illustrates the results with an example Scanning Probe Microscopy (SPM) application. Loss of positioning precision in piezoactuators occurs (1) due to hysteresis during long range applications, (2) due to creep effects when positioning is needed over extended periods of time, and (3) due to induced vibrations during high-speed positioning. This loss in precision restricts the use of piezoactuators in high-speed positioning applications like SPM-based nanofabrication, and ultra-high-precision optical systems. An integrated inversion-based approach is presented in this article to compensate for all three adverse affects—creep, hysteresis, and vibrations. The method is applied to an Atomic Force Microscope (AFM) and experimental results are presented that demonstrate substantial improvements in positioning precision and operating speed.

1.
Choi
,
S.
,
Cho
,
S.
, and
Park
,
Y.
,
1999
, “
Vibration and position tracking control of piezoceramic-based smart structures via qft
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
27
33
.
2.
Wiesendanger, R., 1994, Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, Cambridge, UK.
3.
Barrett
,
R.
,
1994
, “
Active plate and missile wing development using directionally attached piezoelectric elements
,”
AIAA J.
,
32
, No.
3
, Mar., pp.
601
609
.
4.
Ge
,
P.
, and
Jouaneh
,
M.
,
1996
, “
Tracking control of a piezoceramic actuator
,”
IEEE Trans. Control Syst. Technol.
,
4
, No.
3
, pp.
209
216
.
5.
Robinson
,
R. S.
,
1996
, “
Interactive computer correction of piezoelectric creep in scanning tunneling microscopy images
,”
J. Comput.-Assist. Microsc.
,
2
, No.
1
, pp.
53
58
.
6.
Fett
,
T.
, and
Thun
,
G.
,
1998
, “
Determination of room-temperature tensile creep of pzt
,”
J. Mater. Sci. Lett.
,
17
, No.
22
, pp.
1929
1931
.
7.
Xie
,
W.
,
Dai
,
X.
,
Xu
,
L. S.
,
Allee
,
D. A.
, and
Spector
,
J.
,
1997
, “
Fabrication of cr nanostructures with scanning tunneling microscope
,”
Nanotechnology
,
8
, No.
2
, pp.
88
93
.
8.
Basedow
,
R. W.
, and
Cocks
,
T. D.
,
1980
, “
Piezoelectric ceramic displacement characteristics at low frequencies and their consequences in fabry-perot interferometry
,”
J. Phys. E
,
13
, pp.
840
844
.
9.
Goldfarb
,
M.
, and
Celanovic
,
N.
,
1997
, “
A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, Sept., pp.
478
485
.
10.
Kaizuka
,
H.
,
1989
, “
Application of capacitor insertion method to scanning tunneling microscopes
,”
Rev. Sci. Instrum.
,
60
, No.
10
, pp.
3119
3122
.
11.
Barrett
,
R. C.
, and
Quate
,
C. F.
,
1991
, “
Optical scan-correction system applied to atomic force microscopy
,”
Rev. Sci. Instrum.
,
62
, pp.
1393
1399
.
12.
Daniele, A., Salapaka, S., Salapaka, M. V., and Dahleh, M., 1999, “Piezoelectric scanners for atomic force microscopes: Design of lateral sensors, identification and control,” Proceedings of the American Control Conference, San Diego, CA, June, pp. 253–257.
13.
Cruz-Hernandez, J. M., and Hayward, V., 1997, “On the linear compensation of hysteresis,” Proceedings of the 36th Conference on Decision and Control, San Diego, CA, Dec., pp. 1956–1957.
14.
Main
,
J. A.
, and
Garcia
,
E.
,
1997
, “
Piezoelectric stack actuators and control system design: Strategies and pitfalls
,”
J. Guid. Control Dyn.
,
20
, No.
3
, May–June, pp.
479
485
.
15.
Zhao
,
Y.
, and
Jayasuriya
,
S.
,
1995
, “
Feedforward controllers and tracking accuracy in the presence of plant uncertainties
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, No.
4
, pp.
490
495
.
16.
Bayo
,
E.
,
1987
, “
A finite-element approach to control the end-point motion of a single-link flexible robot
,”
J. Rob. Syst.
,
4
, No.
1
, pp.
63
75
.
17.
Dewey
,
J. S.
,
Leang
,
K.
, and
Devasia
,
S.
,
1998
, “
Experimental and theoretical results in output-trajectory redesign for flexible structures
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, No.
4
, Dec., pp.
456
461
.
18.
Croft
,
D.
, and
Devasia
,
S.
,
1999
, “
Vibration compensation for high speed scanning tunneling microscopy
,”
Rev. Sci. Instrum.
,
70
, No.
12
, Dec., pp.
4600
4605
.
19.
Malvern L. E., 1969, Introduction to the Mechanics of a Continuous Medium, chapter 6, Prentice-Hall, Englewood Cliffs, NJ, pp. 313–319.
20.
Chen
,
P. J.
, and
Montgomery
,
S. T.
,
1980
, “
A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity
,”
Ferroelectrics
,
23
, pp.
199
208
.
21.
Holman
,
A. E.
,
Scholte
,
P. M. L. O.
,
Chr. Heerens
,
W.
, and
Tunistra
,
F.
,
1995
, “
Analysis of piezo actuators in translation constructions
,”
Rev. Sci. Instrum.
,
66
, No.
5
, May, pp.
3208
3215
.
22.
Coleman
,
B. D.
, and
Hodgdon
,
M. L.
,
1986
, “
A constitutive relation for rate-independent hysteresis in ferromagnetically soft material
,”
Int. J. Eng. Sci.
,
24
, No.
6
, pp.
897
919
.
23.
Schafer
,
J.
, and
Janocha
,
H.
,
1995
, “
Compensation of hysteresis in solid-state actuators
,”
Sens. Actuators A
,
49
, pp.
97
102
.
24.
Mayergoyz, I. D., 1991, Mathematical Models of Hysteresis, Springer-Verlag.
25.
Sasada
,
I.
,
Urabe
,
H.
, and
Harada
,
K.
,
1988
, “
Hysteresis error correction of magnetic sensors using preisach model
,”
IEEE Transl. J. Magn. Jpn.
,
3
, No.
7
, pp.
586
587
.
26.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-based stable-inversion for output tracking
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, No.
4
, Dec., pp.
625
630
.
27.
Brinkerhoff
,
R.
, and
Devasia
,
S.
,
2000
, “
Output tracking for actuator deficient/redundant systems: Multiple piezoactuator example
,”
J. Guid. Control Dyn.
,
23
, No.
2
, Mar.-Apr., pp.
370
373
.
You do not currently have access to this content.