Control of robotic surface finishing processes such as deburring, grinding, chamfering, and polishing is considered in this paper. A complete dynamic model that describes the dynamic behavior of the robot for surface finishing tasks is developed. A complete surface finishing task is divided into three phases (free motion phase, transition phase, and constrained motion phase) depending on the location of the robot end-effector with respect to the constraint surface. Stable control algorithms are developed for each phase. Emphasis is given to the transition phase and constrained motion phase, where surface finishing takes place. An experimental platform for performing robotic surface finishing operations is developed. The robotic surface finishing system consists of a planar robot with a force sensor and a deburring tool on its end-effector, and a fixture to hold the constraint surface. Extensive experiments based on the proposed control design were conducted for both surface following and surface finishing. Results of surface following and surface finishing experiments are shown and discussed.

1.
Ramachandran, N., Pande, N., and Ramakrishnan, N., 1994, “The Role of Deburring in Manufacturing: A State-of-the Art Survey,” J. Mater. Process. Technol., 44.
2.
Proctor, F. M., and Murphy, K. N., 1989, “Advanced Deburring System Technology,” Keynote Address at the ASME Winter Annual Meeting, San Francisco, CA.
3.
Komanduri
,
R.
,
Merchant
,
M. E.
, and
Shaw
,
M. C.
,
1993
, “
Symposium on US Contributions to Machining and Grinding Research in the 20th Century,” NSF Sponsored Symposium (Organizer: R. Komanduri
),
Appl. Mech. Rev.
,
46
,
No. 3
No. 3
.
4.
Stouffer, K. A., Russel, R., Jr., Archacki, R., Engel, T., Dansereau, R., and Grot, A., 1997, “Advanced Deburring and Chamfering System (ADACS): Final Report,” NIST Technical Report NISTIR 5915.
5.
Koelsch, J. R., 1990, “Banish Manual Deburring,” Manuf. Eng., pp. 71–75.
6.
Erickson, E. G., 1991, “Automated Robotic Deburring Produces Quality Components,” Automation, March, pp. 50–51.
7.
Dornfeld, D. A., 1995, “Consortium on Deburring and Edge Finishing (CODEF) News,” Laboratory for Manufacturing Automation, University of California, Berkeley, CA.
8.
Kazerooni
,
H.
,
1988
, “
Robotic Deburring of Two-dimensional Parts with Unknown Geometry
,”
J. Manuf. Syst.
,
7
, No.
4
, pp.
329
338
.
9.
Bone
,
G. M.
,
Elbestawi
,
M. A.
,
Lingarkar
,
R.
, and
Liu
,
L.
,
1991
, “
Force Control of Robotic Deburring
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
395
400
.
10.
Whitney
,
D. E.
,
1977
, “
Force Feedback Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
, pp.
91
97
.
11.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
, pp.
126
133
.
12.
Whitney
,
D. E.
,
1982
, “
Quasi-static Assembly of Compliantly Supported Rigid Parts
,”
ASME J. Dyn. Syst., Meas., Control
,
104
, pp.
65
77
.
13.
Mason
,
M. T.
,
1981
, “
Compliance and Force Control of Computer Controlled Manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-11
, No.
6
, pp.
418
432
.
14.
Hogan
,
N.
,
1985
, “
Impedence Control: An approach to manipulation: Part I-Theory; Part II-Implementation; Part III-Applications
,”
ASME J. Dyn. Syst., Meas Control
,
107
, pp.
1
24
.
15.
Kazerooni
,
H.
,
Sheridan
,
T.
, and
Houpt
,
P.
,
1986
, “
Robust Compliant Motion for Manipulators
,”
IEEE J. Rob. Autom.
,
2
, No.
2
, pp.
83
105
.
16.
Hemami
,
H.
, and
Wyman
,
B. F.
,
1979
, “
Modeling and Control of Constrained Dynamic Systems with Application to Biped Locomotion in the Frontal Plane
,”
IEEE Trans. Autom. Control
,
24
, pp.
526
535
.
17.
McClamroch, N. H., 1986, “Singular Systems of Differential Equations as Dynamic Models for Constrained Robot System,” IEEE International Conference on Robotics and Automation, pp. 21–28
18.
Arimoto, S., 1996, Control Theory of Non-linear Mechanical Systems—A Passivity-Based and Circuit-Theoretic Approach, Oxford, New York.
19.
Wang
,
D.
, and
McClamroch
,
N. H.
,
1993
, “
Position and Force Control for Constrained Manipulator Motion: Lyapunov’s Direct Method
,”
IEEE Trans. Rob. Autom.
,
9
, No.
3
, pp.
308
312
.
20.
Mills
,
J. K.
, and
Lokhorst
,
D. M.
,
1993
, “
Stability and Control of Robotic Manipulators During Contact/Noncontact Task Transition
,”
IEEE Trans. Rob. Autom.
,
9
, No.
3
, pp.
335
346
.
21.
Youcef-Toumi
,
K.
, and
Gutz
,
D. A.
,
1994
, “
Impact and Force Control: Modeling and Experiments
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
89
98
.
22.
Pagilla
,
P. R.
, and
Tomizuka
,
M.
,
1997
, “
Contact Transition Control of Nonlinear Mechanical Systems Subject to a Unilateral Constraint
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
749
759
.
23.
Tarn, T. J., Wu, Y., Xi, N., and Isidori, A., 1996 “Force Regulation and Contact Transition Control,” IEEE Control Systems, pp. 32–40, Feb.
24.
Brogliato, B., 1996, Nonsmooth Impact Mechanics: Models, Dynamics, and Control, Springer-Verlag, London.
25.
Tornambe
,
A.
,
1999
, “
Modeling and control of the impact in mechanical systems: Theory and experimental results
,”
IEEE Trans. Autom. Control
,
44
, No.
2
, pp.
294
309
.
26.
ten Dam
,
A. A.
,
Dwarshuis
,
E.
, and
Willems
,
J. C.
,
1997
, “
The contact problem for linear continuous time dynamical systems: a geometric approach
,”
IEEE Trans. Autom. Control
,
42
, No.
4
, pp.
458
472
, Apr..
27.
van der Schaft
,
A. J.
, and
Schumacher
,
J. M.
,
1998
, “
Complimentarity Modeling of Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
, No.
4
, pp.
483
499
.
28.
van der Schaft, A. J., and Schumacher H., 2000, An Introduction to Hybrid Dynamical Systems, Springer-Verlag, New York.
29.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
,
63
, pp.
307
316
.
30.
King, R., and Hahn, R., 1986, Handbook of Modern Grinding Technology, Chapman and Hall.
31.
Brach, R. M., 1991, Mechanical Impact Dynamics: Rigid Body Collisions, Wiley, NY.
32.
Kozlov, V. V., and Treschev, D. V., 1991, “Billiards: A Genetric Introduction to the Dynamics of Systems with Impacts,” AMS Translations of Mathematical Monographs, Providence, RI.
33.
Vidyasagar, M., 1978, Nonlinear System Analysis, Prentice Hall, Englewood Cliffs, NJ.
You do not currently have access to this content.