This paper presents a combined scheme of identification and robust torque control for rotary hydraulic actuators. The composite controller consists of a dynamic feedback linearizing inner loop cascaded with an optimal l1-H feedback outer loop. The proposed controller allows the actuator to generate desired torque irrespective of the actuator motion. In fact, the controller reduces significantly the impedance of the actuator as seen by its external load, making the system an ideal source of torque suitable for many robotics and automation applications. The stability analysis of internal unobservable dynamics is presented. An identification method to extract the parameters of nonlinear model of actuator dynamics and to estimate a bound for modeling uncertainty, used for synthesis of the outer optimal controller, is also presented. The theoretical results of the paper are illustrated experimentally on pitch actuator of the Schilling industrial robot.

1.
Alleyne
,
A.
, and
Liu
,
R.
,
1999
, “
On the Limitations of Force Tracking Control for Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
,
184
190
, June.
2.
Alleyne
,
A.
, and
Liu
,
R.
,
2000
, “
A Simplified Approach to Force Control for Electro-Hydraulic Systems
,”
Control Eng. Pract.
,
8
,
1347
1356
.
3.
Dahleh, M., and Diaz-Bobillo, I., 1995, “Control of Uncertain Systems, a Linear Programming Approach,” Prentice Hall, Englewood Cliffs, NJ.
4.
Diaz-Bobillo
,
I.
, and
Dahleh
,
M.
,
1993
, “
Minimization of the Maximum Pick-to-Pick Gain: The General Multiblock Problem
,”
IEEE Trans. Autom. Control
,
38
(
10
),
1459
1482
, October.
5.
Du, H., and Manring, N. D., 2001, “A Single-Actuator Control Design for Hydraulic Displacement Pumps,” Proceedings of the American Control Conference, Arlington, pp. 4484–4489, June.
6.
Elia
,
N.
, and
Dahleh
,
M.
,
1997
, “
Controller Design With Multiple Objectives
,”
IEEE Trans. Autom. Control
,
42
(
5
),
596
611
, May.
7.
Giarre´
,
L.
,
Milanese
,
M.
, and
Taragna
,
M.
,
1997
, “
H∞ Identification and Model Quality Evaluation
,”
IEEE Trans. Autom. Control
,
42
(
2
),
188
199
, February.
8.
Golub, G. H., and Van Loan, C. F., 1996, “Matrix Computations, 3rd Edition,” The Johns Hopkins University press, Baltimore and London.
9.
Habibi
,
S.
, and
Goldenberg
,
A.
,
2000
, “
Design of a New High-Performance Electro-Hydraulic Actuator
,”
IEEE Transactions on Mechatronics
,
5
(
2
),
158
164
, June.
10.
Heuberger
,
P.
,
Van den Hof
,
P.
, and
Bosgra
,
O.
,
1995
, “
A Generalized Orthonormal Basis for Linear Dynamical Systems
,”
IEEE Trans. Autom. Control
,
40
(
3
),
451
465
, March.
11.
Khalil, H., 1996, “Nonlinear Systems,” Prentice Hall, NJ.
12.
Kosut, R., 1995, “Uncertainty Model Unfalsification: A System Identification Paradigm Compatible With Robust Control Design,” Proceedings of 34th IEEE CDC, New Orleans, LA, pp. 3492–3497, December.
13.
Kosut, R., 1996, “Iterative Adaptive Robust Control via Uncertainty Model Unfalsification,” 13th IFAC World Congress, San Francisco, CA, pp. 91–96.
14.
Laval, L., M’Siridi, N. K., and Cadiou, J. C., 1996, “H∞ Force Control of Hydraulic Servo-Actuator With Environmental Uncertainties,” Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MA, pp. 1566–1571, April.
15.
Liu, R., and Alleyne, A., 1999, “Nonlinear Force/Pressure Tracking of an Electrohydraulic Actuator,” IFAC World Congress, China.
16.
Ljung, L., 1987, “System Identification, Theory for User,” Prentice Hall, Englewood Cliffs, NJ.
17.
Lu
,
H.
, and
Lin
,
W.
,
1993
, “
Robust Controller With Disturbance Rejection for Hydraulic Servo Systems
,”
IEEE Transaction on Industrial Electronics,
,
40
,
157
162
, February.
18.
Mougenet, J. F., and Hayward, V., 1995, “Limit Cycle Characterization, Existence and Quenching in the Control of a High Performance Hydraulic Actuator,” Proceedings of IEEE International Conference on Robotics and Automation, Nagoya.
19.
Namvar, M., and Voda, A., 2000, “Approaches to Control-Oriented H∞ Identification,” Proceedings of IFAC Symposium on System Identification (Sysid2000), Santa Barbara, June.
20.
Namvar
,
M.
, and
Voda
,
A.
,
2001
, “
A Near-Optimal Algorithm for H∞ Identification of Fixed Order Rational Models
,”
Int. J. Control
,
74
(
13
),
1370
1381
, September.
21.
Niksefat
,
N.
, and
Sepehri
,
N.
,
2001
, “
Designing Robust Force Control of Hydraulic Actuators Despite System and Environmental Uncertainties
,”
IEEE Control Syst. Mag.
,
66
77
, April.
22.
Poolla
,
K.
,
Khargonekar
,
P.
,
Tikku
,
A.
,
Krause
,
J.
, and
Nagpal
,
K.
,
1994
, “
A Time Domain Approach to Model Validation
,”
IEEE Trans. Autom. Control
,
39
(
5
),
951
959
.
23.
Re
,
L. D.
, and
Isidori
,
A.
,
1995
, “
Performance Enhancement of Nonlinear Drives by Feedback Linearization of Linear-Bilinear Cascade Models
,”
IEEE Trans. Control Syst. Technol.
,
3
(
3
),
299
308
, September.
24.
Scherer
,
C.
,
Gahinet
,
P.
, and
Chilali
,
M.
,
1997
, “
Multiobjective Output-Feedback Control via LMI Optimization
,”
IEEE Trans. Autom. Control
,
42
(
7
),
896
911
, July.
25.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
,
2001
, “
Nonlinear Control of Hydraulic Robots
,”
IEEE Trans. Rob. Auto.
,
17
(
2
),
173
182
, April.
26.
Smith, R., 1992, “Model Validation and Parameter Identification in H∞ and l1,Proceedings of American Control Conference, pp. 2852–2856.
27.
Smith
,
R.
, and
Doyle
,
J.
,
1992
, “
Model Validation: A Connection Between Robust Control and Identification
,”
IEEE Trans. Autom. Control
,
37
(
7
),
942
952
, July.
28.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
,
1999
, “
Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem
,”
IEEE Trans. Control Syst. Technol.
,
7
(
2
),
238
247
, March.
29.
Vossoughi
,
G.
, and
Donath
,
M.
,
1995
, “
Dynamic Feedback Linearization for Electrohydraulically Actuated Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
4
),
468
477
.
30.
Yao
,
B.
,
Bu
,
F.
,
Reedy
,
J.
, and
Chiu
,
G. T. C.
,
2000
, “
Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,”
IEEE Transactions on Mechatronics
,
5
(
1
),
79
91
, March.
31.
Young
,
P.
, and
Dahleh
,
M.
,
1995
, “
Robust lp Stability and Performance
,”
Syst. Control Lett.
, (
26
),
305
312
.
32.
Young
,
P.
, and
Dahleh
,
M.
,
1997
, “
Infinite-Dimensional Convex Optimization in Optimal and Robust Control Theory
,”
IEEE Trans. Autom. Control
,
42
(
10
),
1370
1381
, October.
33.
Zhou, K., and Doyle, J. C., 1996, Essentials in Robust Control, Prentice Hall, NJ.
You do not currently have access to this content.