This paper describes the design of closed-loop control laws for servomechanisms with one dominant flexible mode. An input shaping technique is employed to alter the rigid body phase-plane trajectory that is used in time-optimal servomechanisms. The resulting controllers lead to near time-optimal performance without unwanted residual vibrations. After the basic technique is outlined for a system with one undamped flexible mode, extensions are given considering different acceleration and deceleration capabilities, damping, and slew rate limits.

1.
Barbieri
,
E.
, and
Ozguner
,
U.
,
1993
, “
A New Minimum-Time Control Law for a One-Mode Model of a Flexible Slewing Structure
,”
IEEE Trans. Autom. Control
,
38
(
1
), pp.
142
146
.
2.
Book
,
W. J.
,
1993
, “
Controlled Motion in an Elastic World
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2
), pp.
252
261
.
3.
Franklin, G. F., Powell, J. D., and Workman, M. L., 1998, Digital Control of Dynamic Systems, Reading, MA: Addison-Wesley, pp. 599–615.
4.
Li
,
F.
, and
Bainum
,
P. M.
,
1994
, “
Analytical Time-Optimal Control Synthesis of Fourth-Order System and Maneuvers of Flexible Structures
,”
J. Guid. Control Dyn.
,
17
(
6
), pp.
1171
1178
.
5.
Hejmo
,
W.
,
1983
, “
On the Sensitivity of a Time-Optimal Positional Control
,”
IEEE Trans. Autom. Control
,
28
, No.
5
, pp.
618
621
.
6.
Junkins, J. L., and Kim, Y., 1993, Introduction to Dynamics and Control of Flexible Structures, American Institute of Aeronautics and Astronautics, Washington, D.C.
7.
Newman
,
W. S.
,
1990
, “
Robust Near Time-Optimal Control
,”
IEEE Trans. Autom. Control
,
35
(
7
), pp.
841
844
.
8.
Pao
,
L. Y.
, and
Franklin
,
G. F.
,
1993
, “
Proximate Time-Optimal Control of Third-Order Servomechanisms
,”
IEEE Trans. Autom. Control
,
38
(
4
), pp.
560
580
.
9.
Pao
,
L. Y.
, and
Franklin
,
G. F.
,
1994
, “
The Robustness of a Proximate Time-Optimal Controller
,”
IEEE Trans. Autom. Control
,
39
, No.
9
, pp.
1963
1966
.
10.
Ryan
,
E. P.
,
1983
, “
On the Sensitivity of a Time-Optimal Switching Function
,”
IEEE Trans. Autom. Control
,
25
(
2
), pp.
275
277
.
11.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
76
82
.
12.
Workman, M. L., and Franklin, G. F., 1988, “Implementation of Adaptive Proximate Time-Optimal Controllers,” Proc. American Ctrl. Conf., Atlanta, GA, 2, pp. 1629–1635.
13.
Zinober
,
A. S. I.
, and
Fuller
,
A. T.
,
1973
, “
The Sensitivity of Nominally Time-Optimal Control Systems to Parameter Variation
,”
Int. J. Control
,
17
(
4
), pp.
673
703
.
You do not currently have access to this content.