In this paper, the observer-based control for a class of neutral systems is considered. The analysis is based on the use of Lyapunov functional stability theory. Delay-independent stabilization criteria are proposed to guarantee stability for the systems via linear control. The linear matrix inequality (lmi) approach is used to design the observer and the feedback control. Our results are a simple generalization of a full-order Luenberger observer. A numerical example is given to illustrate the use of our main results.
1.
Dugard, L., and Verriest, E. I., 1998, Stability and Control of Time-Delay Systems, Springer-Verlag, London.
2.
Hale, J. K., and Verduyn Lunel, S. M., 1993, Introduction to Functional Differential Equations, Springer-Verlag, New York.
3.
Kolmanovskii, V. B., and Myshkis, A., 1999, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht.
4.
Trinh
, H.
, 1999
, “Linear Functional State Observer for Time-Delay Systems
,” Int. J. Control
, 72
, pp. 1642
–1658
.5.
Trinh
, H.
, and Aldeen
, M.
, 1997
, “An Asymptotic Model Observer for Linear Autonomous Time Lag Systems
,” IEEE Trans. Autom. Control
, 42
, pp. 742
–745
.6.
Zitek
, P.
, 1998
, “Anisochronic State Observers for Hereditary Systems
,” Int. J. Control
, 71
, pp. 581
–599
.7.
Hou
, M.
, Zitek
, P.
, and Patton
, R. J.
, 2002
, “An Observer Design for Linear Time-Delay Systems
,” IEEE Trans. Autom. Control
, 47
, pp. 121
–125
.8.
Wang
, Z.
, Lam
, J.
, and Burnham
, K. J.
, 2002
, “Stability Analysis and Observer Design for Neutral Delay Systems
,” IEEE Trans. Autom. Control
, 47
, pp. 478
–483
.9.
Mahmoud, M. S., 2000, Robust Control and Filtering for Time-Delay Systems, Marcel Dekker, New York.
10.
Bliman
, P. A.
, 2002
, “Lyapunov Equation for the Stability of Linear Delay Systems of Retarded and Neutral Type
,” IEEE Trans. Autom. Control
, 47
, pp. 327
–335
.11.
Ivanescu
, D.
, Dion
, J.-M.
, Dugard
, L.
, and Niculescu
, S. I.
, 2000
, “Dynamical Compensation for Time-Delay Systems: An LMI Approach
,” Int. J. Robust Nonlinear Control
, 10
, pp. 611
–628
.12.
Lien
, C. H.
, and Chen
, J. D.
, 2003
, “Discrete-Delay-Independent and Discrete-Delay-Dependent Criteria for a Class of Neutral Systems
,” ASME J. Dyn. Syst., Meas., Control
, 125
, pp. 33
–41
.13.
Zhou, K., and Doyle, J. C., 1998, Essentials of Robust Control, Prentice-Hall, New Jersey.
14.
Lien
, C. H.
, 2001
, “New Stability Criterion for a Class of Uncertain Nonlinear Neutral Time-Delay Systems
,” Int. J. Syst. Sci.
, 32
, pp. 215
–219
.15.
Boyd, S. P., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
Copyright © 2004
by ASME
You do not currently have access to this content.