Abstract

This paper presents a direct adaptive controller for chaotic systems. The proposed adaptive controller is constructed using the network called fuzzy rules emulated network (FREN). FREN’s structure is based on human knowledge in the form of fuzzy rules. Parameter adaptation algorithm based on the steepest descent method is presented to fine tune the controller’s performance. To improve the system stability, the modified sliding mode algorithm is applied to estimate the upper and lower bounds of the control effort. The suitable control effort is generated by FREN and kept within these bounds. Some computer simulations of using the controller to control the Hénon map have been performed to demonstrate the performance of the proposed controller.

1.
Moon
,
F. C.
, 1992,
Chaotic and Fractal Dynamics
,
Wiley
,
New York
.
2.
Chen
,
G.
, and
Dong
,
X.
, 1993, “
From Chaos to Order Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
3
, pp.
1363
1409
.
3.
Lakshmanan
,
M.
, and
Murali
,
K.
, 1996,
Chaos in Nonlinear Oscillators: Controlling and Synchronization
,
World
,
Singapore
.
4.
Lin
,
C. T.
, and
Jou
,
C. P.
, 1999, “
Controlling Chaos by GA-Based Reinforcement Learning Neural Network
,”
IEEE Trans. Neural Netw.
1045-9227,
10
, pp.
846
859
.
5.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
1196
1199
.
6.
Ditto
,
W. D.
,
Rauseo
,
S. N.
, and
Spano
,
M. L.
, 1990, “
Experimental Control of Chaos
,”
Phys. Rev. Lett.
0031-9007,
65
, pp.
3211
3214
.
7.
Lu
,
J.
,
Yu
,
X.
, and
Chen
,
G.
, 2003, “
Generating Chaotic Attractors with Multiple Merged Basins of Attraction: A Switching Piecewise-Linear Control Approach
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
50
(
2
), pp.
198
207
.
8.
Alsing
,
P. M.
,
Gavrielides
,
A.
, and
Kovanis
,
V.
, 1994, “
Using Neural Networks for Controlling Chaos
,”
Phys. Rev. E
1063-651X,
49
, pp.
1225
1231
.
9.
Otawara
,
K.
, and
Fan
,
L. T.
, 1995, “
Controlling Chaos with an Artificial Neural Networks
,”
Proc. IEEE Int. Joint Conf. Fuzzy Systems
, New York, Vol.
4
, pp.
1943
1948
.
10.
Udawatta
,
L.
,
Watanabe
,
K.
,
Kiguchi
,
K.
, and
Izumi
,
K.
, 2002, “
Fuzzy-Chaos Hybrid Controller for Controlling of Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
10
, pp.
401
411
.
11.
Lee
,
C. H.
, and
Teng
,
C. C.
, 2000, “
Identification and Control of Dynamic System Using Recurrent Fuzzy Neural Networks
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
8
, pp.
349
366
.
12.
Lin
,
C. T.
,
Juang
,
C. F.
, and
Li
,
C. P.
, 2000, “
Water Bath Temperature Control With a Neural Fuzzy Inference Network
,”
Fuzzy Sets Syst.
0165-0114,
111
, pp.
285
306
.
13.
Jang
,
J. S.
, 1993, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
, pp.
665
685
.
14.
Jang
,
J. S.
,
Sun
,
C. T.
, and
Mizutani
,
E.
, 1997,
Neuro-Fuzzy and Soft Computing
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Chen
,
M.
, and
Linkens
,
D. A.
, 1998, “
A Hybrid Neuro-Fuzzy PID Controllers
,”
Fuzzy Sets Syst.
0165-0114,
99
, pp.
27
36
.
16.
Shi
,
Y.
, and
Mizumoto
,
M.
, 2001, “
An Improvement of Neuro-Fuzzy Learning Algorithm for Tuning Fuzzy Rules
,”
Fuzzy Sets Syst.
0165-0114,
118
, pp.
339
350
.
17.
Cuesta
,
F.
,
Gordillo
,
F.
,
Aracil
,
J.
, and
Ollero
,
A.
, 1999, “
Stability Analysis of Nonlinear Multivariable Takagi-Sugeno Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
7
, pp.
506
520
.
18.
Lin
,
C. T.
, and
Lee
,
C. S. G.
, 1993, “
Neural Network Based Fuzzy Logic Control and Decision System
,”
IEEE Trans. Comput.
0018-9340,
40
, pp.
1320
1335
.
19.
Chakraborty
,
D.
, and
Pal
,
N. R.
, 2001, “
Integrated Feature Analysis and Fuzzy Rule-Based System Identification in a Neuro-Fuzzy Paradigm
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
31
, pp.
319
400
.
20.
Furuta
,
K.
, 1990, “
Sliding Mode Control of a Discrete System
,”
Syst. Control Lett.
0167-6911,
14
, pp.
145
152
.
21.
Utkin
,
V. I.
, 1993, “
Sliding Mode Control in Discrete-Time and Difference Systems
,”
Variable Structure and Lyapunov Control
,
A. S.
Zinoder
, ed.
Springer-Verlag
,
London
, pp.
83
103
.
22.
Tang
,
C. Y.
, and
Misawa
,
E. A.
, 2000, “
Discrete Variable Structure Control for Linear Multivariable Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
783
792
.
23.
Misawa
,
E. A.
, 1997, “
Discrete-Time Sliding Mode Control: The Linear Case
,”
J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
819
821
.
24.
Treesatayapun
,
C.
,
Uatrongjit
,
S.
, and
Kantapanit
,
K.
, 2002, “
Fuzzy Graphic Rule Network and its Application on the Water Bath Temperature Control System
,”
ACC 2002 IEEE American Control Conference
, Anchorage, Alaska, May, Vol.
1
, pp.
476
480
.
25.
Treesatayapun
,
C.
, and
Kantapanit
,
K.
, 2005, “
Adaptive Controller With Fuzzy Rules Emulated Structure and its Application
,”
Engineering Applications of Artificial Intelligence
, Elsevier, Vol.
18
, pp.
603
615
.
You do not currently have access to this content.