Abstract

In road vehicles, wheel locking can be prevented by means of closed-loop anti-lock braking systems (ABS). Automatic braking is extensively used also for electronic stability control (ESC) systems. In braking control systems, two output variables are usually considered for regulation purposes: wheel deceleration and wheel longitudinal slip. Wheel deceleration is the controlled output traditionally used in ABS, since it can be easily measured with a simple wheel encoder; however, the dynamics of a classical regulation loop on the wheel deceleration critically depend on the road conditions. A regulation loop on the wheel longitudinal slip is simpler and dynamically robust; moreover, slip control is perfectly suited for both ABS and ESC applications. However, the wheel-slip measurement is critical, since it requires the estimation of the longitudinal speed of the vehicle body, which cannot be directly measured. Noise sensitivity of slip control hence is a critical issue, especially at low speed. In this work a new control strategy called mixed slip-deceleration (MSD) control is proposed: the basic idea is that the regulated variable is a convex combination of wheel deceleration and longitudinal slip. This strategy turns out to be very powerful and flexible: it inherits all the attractive dynamical features of slip control, while providing a much lower sensitivity to slip-measurement noise.

1.
Gissinger
,
G. L.
,
Menare
,
C.
, and
Constans
,
A.
, 2003, “
A Mechatronic Conception of a New Intelligent Braking System
,”
Control Eng. Pract.
0967-0661,
11
, pp.
163
170
.
2.
Johansen
,
T. A.
,
Petersen
,
I.
,
Kalkkuhl
,
J.
, and
Lüdemann
,
J.
, 2001, “
Hybrid Control Strategies in ABS
,” in
Proceedings of the American Control Conference
,
Arlington, VA
, June 25–27, pp.
1704
1705
.
3.
Kiencke
,
U.
, and
Nielsen
,
L.
, 2000,
Automotive Control Systems for Engine, Driveline, and Vehicle
,
Springer Verlag
,
Berlin
.
4.
SAE
, 1992, “
Antilock Brake Review
,” Tech. Report J2246, Society of Automotive Engineers, Warrendale, PA.
5.
Silani
,
E.
,
Savaresi
,
S. M.
,
Bittanti
,
S.
,
Visconti
,
A.
, and
Farachi
,
F.
, 2003, “
The Concept of Performance-Oriented Yaw-Control Systems: Vehicle Model and Analysis
,”
SAE Trans., J. Passenger Cars Mech. Sys.
,
2002
, pp.
1808
1818
.
6.
Wellstead
,
P. E.
, and
Petit
,
N. B.
, 1997, “
Analysis and Redesign of an Antilock Brake System Controller
,”
Proc. Inst. Electr. Eng.
0020-3270,
144
, pp.
413
426
.
7.
Buckholtz
,
K. R.
, 2002, “
Reference Input Wheel Slip Tracking Using Sliding Mode Control
,” SAE Technical Paper No. 2002-01-0301.
8.
Johansen
,
T. A.
,
Petersen
,
I.
,
Kalkkuhl
,
J.
, and
Lüdemann
,
J.
, 2001, “
Wheel Slip Control in ABS Brakes Using Gain Scheduled Constrained LQR
,” in
Proceedings of the European Control Conference
,
Porto
, September 4–7, pp.
155
146
.
9.
Johansen
,
T. A.
,
Petersen
,
I.
,
Kalkkuhl
,
J.
, and
Lüdemann
,
J.
, 2003, “
Gain-Scheduled Wheel Slip Control in Automotive Brake Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
6
), pp.
799
811
.
10.
Solyom
,
S.
,
Rantzer
,
A.
, and
Lüdemann
,
J.
, 2004, “
Synthesis of a Model-Based Tire Slip Controller
,”
Veh. Syst. Dyn.
0042-3114,
41
(
6
), pp.
477
511
.
11.
Yu
,
J. S.
, 1997, “
A Robust Adaptive Wheel-Sleep Controller for Antilock Brake System
,” in
Proceedings of the 36th Conference on Decision & Control
,
San Diego, CA
, December 10–12, pp.
2545
2546
.
12.
Savaresi
,
S. M.
,
Silani
,
E.
, and
Bittanti
,
S.
, 2005, “
Acceleration-Driven-Damper (ADD): An Optimal Control Algorithm for Comfort-Oriented Semi-Active Suspensions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
2
), pp.
218
229
.
13.
Drakunov
,
S.
,
Ozguner
,
U.
,
Dix
,
P.
, and
Ashrafi
,
B.
, 1995, “
ABS Control Using Optimum Search via Sliding Modes
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
1
), pp.
79
85
.
14.
Jiang
,
F.
, and
Gao
,
Z.
, 2001, “
An Application of Nonlinear PID Control to a Class of Truck ABS Problems
,” in
Proceedings of the IEEE Conference on Decision and Control
,
Orlando, FL
, December 4–7, pp.
516
521
.
15.
Layne
,
J. R.
,
Passino
,
K. M.
, and
Yurkovich
,
S.
, 1993, “
Fuzzy Learning Control for Antiskid Braking Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
1
(
2
), pp.
122
129
.
16.
Lee
,
T. T.
,
Hsu
,
C. F.
, and
Lee
,
S.
, 2003, “
Robust Hybrid Control for Antilock Braking Systems
,” in
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
,
Washington DC
, October 5–8, pp.
84
89
.
17.
Lin
,
C. M.
, and
Hsu
,
C. F.
, 2002, “
Self-Learning Fuzzy Sliding-Mode Control for Antilock Braking Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
2
), pp.
273
278
.
18.
Lin
,
C. M.
, and
Hsu
,
C. F.
, 2003, “
Neural-Network Hybrid Control for Antilock Braking Systems
,”
IEEE Trans. Neural Netw.
1045-9227,
14
(
2
),
351
359
.
19.
Schinkel
,
M.
, and
Hunt
,
K.
, 2002, “
Anti-lock Braking Control using a Sliding Mode like Approach
,” in
Proceedings of the American Control Conference
,
Anchorage, AK
, May 8–10, pp.
2386
2391
.
20.
Somakumar
,
R.
, and
Chandrasekhar
,
J.
, 1999, “
Intelligent Anti-Skid Brake Controller Using a Neural Network
,”
Control Eng. Pract.
0967-0661,
7
, pp.
611
621
.
21.
Tsiotras
,
P.
, and
Canudas de Wit
,
C.
, 2000, “
On the Optimal Braking of Wheeled Vehicles
,” in
Proceedings of the American Control Conference
,
Chicago, IL
, June 28–30, pp.
569
573
.
22.
Ünsal
,
C.
, and
Kachroo
,
P.
, 1999, “
Sliding Mode Measurement Feedback Control for Antilock Braking Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
(
2
), pp.
271
281
.
23.
Yi
,
J.
,
Alvarez
,
L.
, and
Horowitz
,
R.
, 2002, “
Adaptive Emergency Braking Control With Underestimation of Friction Coefficient
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
3
), pp.
381
392
.
24.
Yi
,
J.
,
Alvarez
,
L.
,
Horowitz
,
R.
, and
Canudas de Wit
,
C.
, 2000, “
Adaptive Emergency Braking Control Using a Dynamic Tire-Road Friction Model
,” in
Proceedings of the IEEE Conference on Decision & Control
,
Sidney, Australia
, December 12–15, pp.
456
461
.
25.
Canudas de Wit
,
C.
,
Petersen
,
M. L.
, and
Shiriaev
,
A.
, 2003, “
A New Nonlinear Observer for Tire/Road Distributed Contact Friction
,” in
Proceedings of the 42nd IEEE Conference on Decision and Control
,
Maui, HI
, December 9–12, pp.
2246
2251
.
26.
Claeys
,
X.
,
Yi
,
J.
,
Alvarez
,
L.
,
Horowitz
,
R.
, and
Canudas de Wit
,
C.
, 2001, “
A Dynamic Tire-Road Friction Model for 3D Vehicle Control and Simulation
,” in
Proceedings of IEEE Intelligent Transportation System Conference
,
Oakland, CA
, August 25–29, pp.
403
488
.
27.
Gustafsson
,
F.
, 1997, “
Slip-Based Tire-Road Friction Estimation
,”
Automatica
0005-1098,
33
(
6
), pp.
1087
1099
.
28.
Ono
,
E.
,
Asano
,
K.
,
Sugai
,
M.
,
Ito
,
S.
,
Yamamoto
,
M.
,
Sawada
,
M.
, and
Yasui
,
Y.
, 2003, “
Estimation of Automotive Tire Force Characteristics Using Wheel Velocity
,”
Control Eng. Pract.
0967-0661,
11
, pp.
1361
1370
.
29.
Guardabassi
,
G. O.
, and
Savaresi
,
S. M.
, 2001, “
Approximate Linearization via Feedback—an Overview
,”
Automatica
0005-1098,
27
, pp.
1
15
.
30.
Kailath
,
T.
, 1980,
Linear Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
31.
Savaresi
,
S. M.
,
Nijmeijer
,
H.
, and
Guardabassi
,
G. O.
, 2000, “
On the Design of Approximate Nonlinear Parametric Controllers
,”
Int. J. Robust Nonlinear Control
1049-8923,
10
, pp.
137
155
.
32.
Bittanti
,
S.
, and
Picci
,
G.
, eds., 1996,
Identification, Adaptation, Learning—The Science of Learning Models from Data
,
Computer and Systems Sciences Series
,
Springer-Verlag
,
Berlin
.
33.
Bittanti
,
S.
, and
Savaresi
,
S. M.
, 2000,
On the Parametrization and Design of an Extended Kalman Filter Frequency Tracker
,
IEEE Trans. Autom. Control
0018-9286,
45
(
9
), pp.
1718
1724
.
34.
Pintelon
,
R.
, and
Schoukens
,
J.
, 2001,
System Identification: a Frequency Domain Approach
,
IEEE
,
New York
.
35.
Savaresi
,
S. M.
,
Bitmead
,
R.
, and
Dunstan
,
W.
, 2001, “
Nonlinear System Identification Using Closed-Loop Data With no External Excitation: The Case of a Lean Combustion Process
,”
Int. J. Control
0020-7179,
74
, pp.
1796
1806
.
36.
Savaresi
,
S. M.
, and
Wittenmark
,
G.
, 2000, “
Rejection of Narrow-Band Disturbances Subject to Uncertain Time-Delays
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
14
, pp.
39
49
.
37.
Söderström
,
T.
, and
Stoica
,
P.
, 1989,
System Identification
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.